| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equsal | GIF version | ||
| Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| equsal.1 | ⊢ Ⅎ𝑥𝜓 | 
| equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| equsal | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 1692 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) | 
| 3 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | pm5.74i 180 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) | 
| 5 | 4 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) | 
| 6 | a9e 1710 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 7 | 6 | a1bi 243 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) | 
| 8 | 2, 5, 7 | 3bitr4i 212 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: intirr 5056 fun11 5325 | 
| Copyright terms: Public domain | W3C validator |