ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsal GIF version

Theorem equsal 1720
Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.)
Hypotheses
Ref Expression
equsal.1 𝑥𝜓
equsal.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsal (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem equsal
StepHypRef Expression
1 equsal.1 . . 3 𝑥𝜓
2119.23 1671 . 2 (∀𝑥(𝑥 = 𝑦𝜓) ↔ (∃𝑥 𝑥 = 𝑦𝜓))
3 equsal.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43pm5.74i 179 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜓))
54albii 1463 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜓))
6 a9e 1689 . . 3 𝑥 𝑥 = 𝑦
76a1bi 242 . 2 (𝜓 ↔ (∃𝑥 𝑥 = 𝑦𝜓))
82, 5, 73bitr4i 211 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  wnf 1453  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  intirr  4997  fun11  5265
  Copyright terms: Public domain W3C validator