ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssssr GIF version

Theorem nssssr 4236
Description: Negation of subclass relationship. Compare nssr 3229. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
nssssr (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nssssr
StepHypRef Expression
1 exanaliim 1657 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ ∀𝑥(𝑥𝐴𝑥𝐵))
2 ssextss 4234 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2sylnibr 678 1 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1361  wex 1502  wss 3143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator