| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nssssr | GIF version | ||
| Description: Negation of subclass relationship. Compare nssr 3261. (Contributed by Jim Kingdon, 17-Sep-2018.) |
| Ref | Expression |
|---|---|
| nssssr | ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exanaliim 1671 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) → ¬ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | |
| 2 | ssextss 4282 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | |
| 3 | 1, 2 | sylnibr 679 | 1 ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 ⊆ wss 3174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |