| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
| 2 | | fsum2d.7 |
. . . 4
⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) |
| 3 | 1, 2 | sylib 122 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) |
| 4 | | nfcv 2339 |
. . . . . 6
⊢
Ⅎ𝑚Σ𝑘 ∈ 𝐵 𝐶 |
| 5 | | nfcsb1v 3117 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐵 |
| 6 | | nfcsb1v 3117 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐶 |
| 7 | 5, 6 | nfsum 11522 |
. . . . . 6
⊢
Ⅎ𝑗Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 |
| 8 | | csbeq1a 3093 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑗⦌𝐵) |
| 9 | | csbeq1a 3093 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑗⦌𝐶) |
| 10 | 9 | adantr 276 |
. . . . . . 7
⊢ ((𝑗 = 𝑚 ∧ 𝑘 ∈ 𝐵) → 𝐶 = ⦋𝑚 / 𝑗⦌𝐶) |
| 11 | 8, 10 | sumeq12dv 11537 |
. . . . . 6
⊢ (𝑗 = 𝑚 → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶) |
| 12 | 4, 7, 11 | cbvsumi 11527 |
. . . . 5
⊢
Σ𝑗 ∈
{𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 |
| 13 | | fsum2d.6 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴) |
| 14 | 13 | unssbd 3341 |
. . . . . . . 8
⊢ (𝜑 → {𝑦} ⊆ 𝐴) |
| 15 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 16 | 15 | snss 3757 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
| 17 | 14, 16 | sylibr 134 |
. . . . . . 7
⊢ (𝜑 → 𝑦 ∈ 𝐴) |
| 18 | | fsum2d.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) |
| 19 | 18 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 𝐵 ∈ Fin) |
| 20 | | nfcsb1v 3117 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐵 |
| 21 | 20 | nfel1 2350 |
. . . . . . . . . 10
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐵 ∈ Fin |
| 22 | | csbeq1a 3093 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
| 23 | 22 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝐵 ∈ Fin ↔ ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin)) |
| 24 | 21, 23 | rspc 2862 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin)) |
| 25 | 17, 19, 24 | sylc 62 |
. . . . . . . 8
⊢ (𝜑 → ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin) |
| 26 | | fsum2d.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) |
| 27 | 26 | ralrimivva 2579 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 28 | | nfcsb1v 3117 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐶 |
| 29 | 28 | nfel1 2350 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
| 30 | 20, 29 | nfralxy 2535 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
| 31 | | csbeq1a 3093 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
| 32 | 31 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑦 → (𝐶 ∈ ℂ ↔ ⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
| 33 | 22, 32 | raleqbidv 2709 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ ↔ ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
| 34 | 30, 33 | rspc 2862 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
| 35 | 17, 27, 34 | sylc 62 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
| 36 | 35 | r19.21bi 2585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) → ⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
| 37 | 25, 36 | fsumcl 11565 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
| 38 | | csbeq1 3087 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → ⦋𝑚 / 𝑗⦌𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
| 39 | | csbeq1 3087 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑦 → ⦋𝑚 / 𝑗⦌𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
| 40 | 39 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑚 / 𝑗⦌𝐵) → ⦋𝑚 / 𝑗⦌𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
| 41 | 38, 40 | sumeq12dv 11537 |
. . . . . . . 8
⊢ (𝑚 = 𝑦 → Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
| 42 | 41 | sumsn 11576 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
| 43 | 17, 37, 42 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
| 44 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑚⦋𝑦 / 𝑗⦌𝐶 |
| 45 | | nfcsb1v 3117 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
| 46 | | csbeq1a 3093 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ⦋𝑦 / 𝑗⦌𝐶 = ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
| 47 | 44, 45, 46 | cbvsumi 11527 |
. . . . . . 7
⊢
Σ𝑘 ∈
⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 = Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
| 48 | | csbeq1 3087 |
. . . . . . . . 9
⊢ (𝑚 = (2nd ‘𝑧) → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
| 49 | | snfig 6873 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ V → {𝑦} ∈ Fin) |
| 50 | 49 | elv 2767 |
. . . . . . . . . 10
⊢ {𝑦} ∈ Fin |
| 51 | | xpfi 6993 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ Fin ∧
⦋𝑦 / 𝑗⦌𝐵 ∈ Fin) → ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ∈ Fin) |
| 52 | 50, 25, 51 | sylancr 414 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ∈ Fin) |
| 53 | | 2ndconst 6280 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)):({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)–1-1-onto→⦋𝑦 / 𝑗⦌𝐵) |
| 54 | 17, 53 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (2nd ↾
({𝑦} ×
⦋𝑦 / 𝑗⦌𝐵)):({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)–1-1-onto→⦋𝑦 / 𝑗⦌𝐵) |
| 55 | | fvres 5582 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → ((2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))‘𝑧) = (2nd ‘𝑧)) |
| 56 | 55 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → ((2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))‘𝑧) = (2nd ‘𝑧)) |
| 57 | 45 | nfel1 2350 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
| 58 | 46 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
| 59 | 57, 58 | rspc 2862 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ⦋𝑦 / 𝑗⦌𝐵 → (∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
| 60 | 35, 59 | mpan9 281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ⦋𝑦 / 𝑗⦌𝐵) → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
| 61 | 48, 52, 54, 56, 60 | fsumf1o 11555 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
| 62 | | elxp 4680 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ↔ ∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵))) |
| 63 | | nfv 1542 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗 𝑧 = 〈𝑚, 𝑘〉 |
| 64 | | nfv 1542 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑚 ∈ {𝑦} |
| 65 | 20 | nfcri 2333 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵 |
| 66 | 64, 65 | nfan 1579 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗(𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) |
| 67 | 63, 66 | nfan 1579 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
| 68 | 67 | nfex 1651 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
| 69 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) |
| 70 | | opeq1 3808 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → 〈𝑚, 𝑘〉 = 〈𝑗, 𝑘〉) |
| 71 | 70 | eqeq2d 2208 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑗 → (𝑧 = 〈𝑚, 𝑘〉 ↔ 𝑧 = 〈𝑗, 𝑘〉)) |
| 72 | | velsn 3639 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ {𝑦} ↔ 𝑚 = 𝑦) |
| 73 | 72 | anbi1i 458 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
| 74 | | eqtr2 2215 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → 𝑗 = 𝑦) |
| 75 | 74, 22 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → 𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
| 76 | 75 | eleq2d 2266 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → (𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
| 77 | 76 | pm5.32da 452 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → ((𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵))) |
| 78 | 73, 77 | bitr4id 199 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
| 79 | | equequ1 1726 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → (𝑚 = 𝑦 ↔ 𝑗 = 𝑦)) |
| 80 | 79 | anbi1d 465 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → ((𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵) ↔ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
| 81 | 78, 80 | bitrd 188 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
| 82 | 71, 81 | anbi12d 473 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑗 → ((𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ (𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)))) |
| 83 | 82 | exbidv 1839 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑗 → (∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ ∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)))) |
| 84 | 68, 69, 83 | cbvex 1770 |
. . . . . . . . . . . 12
⊢
(∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ ∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
| 85 | 62, 84 | bitri 184 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ↔ ∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
| 86 | | nfv 1542 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝜑 |
| 87 | | nfcv 2339 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(2nd ‘𝑧) |
| 88 | 87, 28 | nfcsb 3122 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
| 89 | 88 | nfeq2 2351 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝐷 =
⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
| 90 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝜑 |
| 91 | | nfcsb1v 3117 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
| 92 | 91 | nfeq2 2351 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝐷 =
⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
| 93 | | fsum2d.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) |
| 94 | 93 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = 𝐶) |
| 95 | 31 | ad2antrl 490 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
| 96 | | fveq2 5558 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 〈𝑗, 𝑘〉 → (2nd ‘𝑧) = (2nd
‘〈𝑗, 𝑘〉)) |
| 97 | | vex 2766 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑗 ∈ V |
| 98 | | vex 2766 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑘 ∈ V |
| 99 | 97, 98 | op2nd 6205 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈𝑗, 𝑘〉) = 𝑘 |
| 100 | 96, 99 | eqtr2di 2246 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝑘 = (2nd ‘𝑧)) |
| 101 | 100 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝑘 = (2nd ‘𝑧)) |
| 102 | | csbeq1a 3093 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (2nd ‘𝑧) → ⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
| 103 | 101, 102 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → ⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
| 104 | 94, 95, 103 | 3eqtrd 2233 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
| 105 | 104 | expl 378 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
| 106 | 90, 92, 105 | exlimd 1611 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
| 107 | 86, 89, 106 | exlimd 1611 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
| 108 | 85, 107 | biimtrid 152 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
| 109 | 108 | imp 124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
| 110 | 109 | sumeq2dv 11533 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
| 111 | 61, 110 | eqtr4d 2232 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
| 112 | 47, 111 | eqtrid 2241 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
| 113 | 43, 112 | eqtrd 2229 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
| 114 | 12, 113 | eqtrid 2241 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
| 115 | 114 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
| 116 | 3, 115 | oveq12d 5940 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶) = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
| 117 | | fsum2d.5 |
. . . . 5
⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥) |
| 118 | | disjsn 3684 |
. . . . 5
⊢ ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑥) |
| 119 | 117, 118 | sylibr 134 |
. . . 4
⊢ (𝜑 → (𝑥 ∩ {𝑦}) = ∅) |
| 120 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦})) |
| 121 | | fsum2dlemstep.x |
. . . . 5
⊢ (𝜑 → 𝑥 ∈ Fin) |
| 122 | 50 | a1i 9 |
. . . . 5
⊢ (𝜑 → {𝑦} ∈ Fin) |
| 123 | | unfidisj 6983 |
. . . . 5
⊢ ((𝑥 ∈ Fin ∧ {𝑦} ∈ Fin ∧ (𝑥 ∩ {𝑦}) = ∅) → (𝑥 ∪ {𝑦}) ∈ Fin) |
| 124 | 121, 122,
119, 123 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → (𝑥 ∪ {𝑦}) ∈ Fin) |
| 125 | 13 | sselda 3183 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝑗 ∈ 𝐴) |
| 126 | 26 | anassrs 400 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 127 | 18, 126 | fsumcl 11565 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 128 | 125, 127 | syldan 282 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → Σ𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 129 | 119, 120,
124, 128 | fsumsplit 11572 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶)) |
| 130 | 129 | adantr 276 |
. 2
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶)) |
| 131 | | eliun 3920 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ↔ ∃𝑗 ∈ 𝑥 𝑧 ∈ ({𝑗} × 𝐵)) |
| 132 | | xp1st 6223 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ {𝑗}) |
| 133 | | elsni 3640 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑧) ∈ {𝑗} → (1st ‘𝑧) = 𝑗) |
| 134 | 132, 133 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) = 𝑗) |
| 135 | 134 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (1st ‘𝑧) = 𝑗) |
| 136 | | simpl 109 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑗 ∈ 𝑥) |
| 137 | 135, 136 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (1st ‘𝑧) ∈ 𝑥) |
| 138 | 137 | rexlimiva 2609 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
𝑥 𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ 𝑥) |
| 139 | 131, 138 | sylbi 121 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ 𝑥) |
| 140 | | xp1st 6223 |
. . . . . . . . 9
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → (1st ‘𝑧) ∈ {𝑦}) |
| 141 | 139, 140 | anim12i 338 |
. . . . . . . 8
⊢ ((𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → ((1st ‘𝑧) ∈ 𝑥 ∧ (1st ‘𝑧) ∈ {𝑦})) |
| 142 | | elin 3346 |
. . . . . . . 8
⊢ (𝑧 ∈ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ↔ (𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))) |
| 143 | | elin 3346 |
. . . . . . . 8
⊢
((1st ‘𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ ((1st ‘𝑧) ∈ 𝑥 ∧ (1st ‘𝑧) ∈ {𝑦})) |
| 144 | 141, 142,
143 | 3imtr4i 201 |
. . . . . . 7
⊢ (𝑧 ∈ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → (1st ‘𝑧) ∈ (𝑥 ∩ {𝑦})) |
| 145 | 119 | eleq2d 2266 |
. . . . . . . 8
⊢ (𝜑 → ((1st
‘𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ (1st ‘𝑧) ∈
∅)) |
| 146 | | noel 3454 |
. . . . . . . . 9
⊢ ¬
(1st ‘𝑧)
∈ ∅ |
| 147 | 146 | pm2.21i 647 |
. . . . . . . 8
⊢
((1st ‘𝑧) ∈ ∅ → 𝑧 ∈ ∅) |
| 148 | 145, 147 | biimtrdi 163 |
. . . . . . 7
⊢ (𝜑 → ((1st
‘𝑧) ∈ (𝑥 ∩ {𝑦}) → 𝑧 ∈ ∅)) |
| 149 | 144, 148 | syl5 32 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → 𝑧 ∈ ∅)) |
| 150 | 149 | ssrdv 3189 |
. . . . 5
⊢ (𝜑 → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ⊆ ∅) |
| 151 | | ss0 3491 |
. . . . 5
⊢
((∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ⊆ ∅ → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) = ∅) |
| 152 | 150, 151 | syl 14 |
. . . 4
⊢ (𝜑 → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) = ∅) |
| 153 | | iunxun 3996 |
. . . . . 6
⊢ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ∪
𝑗 ∈ {𝑦} ({𝑗} × 𝐵)) |
| 154 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑚({𝑗} × 𝐵) |
| 155 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑗{𝑚} |
| 156 | 155, 5 | nfxp 4690 |
. . . . . . . . 9
⊢
Ⅎ𝑗({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) |
| 157 | | sneq 3633 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → {𝑗} = {𝑚}) |
| 158 | 157, 8 | xpeq12d 4688 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → ({𝑗} × 𝐵) = ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵)) |
| 159 | 154, 156,
158 | cbviun 3953 |
. . . . . . . 8
⊢ ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = ∪
𝑚 ∈ {𝑦} ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) |
| 160 | | sneq 3633 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑦 → {𝑚} = {𝑦}) |
| 161 | 160, 38 | xpeq12d 4688 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
| 162 | 15, 161 | iunxsn 3993 |
. . . . . . . 8
⊢ ∪ 𝑚 ∈ {𝑦} ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) |
| 163 | 159, 162 | eqtri 2217 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) |
| 164 | 163 | uneq2i 3314 |
. . . . . 6
⊢ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ∪
𝑗 ∈ {𝑦} ({𝑗} × 𝐵)) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
| 165 | 153, 164 | eqtri 2217 |
. . . . 5
⊢ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
| 166 | 165 | a1i 9 |
. . . 4
⊢ (𝜑 → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))) |
| 167 | | snfig 6873 |
. . . . . . . 8
⊢ (𝑗 ∈ V → {𝑗} ∈ Fin) |
| 168 | 167 | elv 2767 |
. . . . . . 7
⊢ {𝑗} ∈ Fin |
| 169 | 125, 18 | syldan 282 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ Fin) |
| 170 | | xpfi 6993 |
. . . . . . 7
⊢ (({𝑗} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑗} × 𝐵) ∈ Fin) |
| 171 | 168, 169,
170 | sylancr 414 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → ({𝑗} × 𝐵) ∈ Fin) |
| 172 | 171 | ralrimiva 2570 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
| 173 | | disjsnxp 6295 |
. . . . . 6
⊢
Disj 𝑗 ∈
(𝑥 ∪ {𝑦})({𝑗} × 𝐵) |
| 174 | 173 | a1i 9 |
. . . . 5
⊢ (𝜑 → Disj 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) |
| 175 | | iunfidisj 7012 |
. . . . 5
⊢ (((𝑥 ∪ {𝑦}) ∈ Fin ∧ ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin ∧ Disj 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
| 176 | 124, 172,
174, 175 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
| 177 | | eliun 3920 |
. . . . . 6
⊢ (𝑧 ∈ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ↔ ∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵)) |
| 178 | | elxp 4680 |
. . . . . . . 8
⊢ (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) |
| 179 | | simprl 529 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑧 = 〈𝑚, 𝑘〉) |
| 180 | | simprrl 539 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑚 ∈ {𝑗}) |
| 181 | | elsni 3640 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {𝑗} → 𝑚 = 𝑗) |
| 182 | 180, 181 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑚 = 𝑗) |
| 183 | 182 | opeq1d 3814 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 〈𝑚, 𝑘〉 = 〈𝑗, 𝑘〉) |
| 184 | 179, 183 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑧 = 〈𝑗, 𝑘〉) |
| 185 | 184, 93 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐷 = 𝐶) |
| 186 | | simpll 527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝜑) |
| 187 | 125 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑗 ∈ 𝐴) |
| 188 | | simprrr 540 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑘 ∈ 𝐵) |
| 189 | 186, 187,
188, 26 | syl12anc 1247 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐶 ∈ ℂ) |
| 190 | 185, 189 | eqeltrd 2273 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐷 ∈ ℂ) |
| 191 | 190 | ex 115 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → ((𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵)) → 𝐷 ∈ ℂ)) |
| 192 | 191 | exlimdvv 1912 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → (∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵)) → 𝐷 ∈ ℂ)) |
| 193 | 178, 192 | biimtrid 152 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → (𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
| 194 | 193 | rexlimdva 2614 |
. . . . . 6
⊢ (𝜑 → (∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
| 195 | 177, 194 | biimtrid 152 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
| 196 | 195 | imp 124 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) → 𝐷 ∈ ℂ) |
| 197 | 152, 166,
176, 196 | fsumsplit 11572 |
. . 3
⊢ (𝜑 → Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
| 198 | 197 | adantr 276 |
. 2
⊢ ((𝜑 ∧ 𝜓) → Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
| 199 | 116, 130,
198 | 3eqtr4d 2239 |
1
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) |