Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
2 | | fsum2d.7 |
. . . 4
⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) |
3 | 1, 2 | sylib 121 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) |
4 | | nfcv 2312 |
. . . . . 6
⊢
Ⅎ𝑚Σ𝑘 ∈ 𝐵 𝐶 |
5 | | nfcsb1v 3082 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐵 |
6 | | nfcsb1v 3082 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐶 |
7 | 5, 6 | nfsum 11320 |
. . . . . 6
⊢
Ⅎ𝑗Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 |
8 | | csbeq1a 3058 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑗⦌𝐵) |
9 | | csbeq1a 3058 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑗⦌𝐶) |
10 | 9 | adantr 274 |
. . . . . . 7
⊢ ((𝑗 = 𝑚 ∧ 𝑘 ∈ 𝐵) → 𝐶 = ⦋𝑚 / 𝑗⦌𝐶) |
11 | 8, 10 | sumeq12dv 11335 |
. . . . . 6
⊢ (𝑗 = 𝑚 → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶) |
12 | 4, 7, 11 | cbvsumi 11325 |
. . . . 5
⊢
Σ𝑗 ∈
{𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 |
13 | | fsum2d.6 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴) |
14 | 13 | unssbd 3305 |
. . . . . . . 8
⊢ (𝜑 → {𝑦} ⊆ 𝐴) |
15 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
16 | 15 | snss 3709 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
17 | 14, 16 | sylibr 133 |
. . . . . . 7
⊢ (𝜑 → 𝑦 ∈ 𝐴) |
18 | | fsum2d.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) |
19 | 18 | ralrimiva 2543 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 𝐵 ∈ Fin) |
20 | | nfcsb1v 3082 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐵 |
21 | 20 | nfel1 2323 |
. . . . . . . . . 10
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐵 ∈ Fin |
22 | | csbeq1a 3058 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
23 | 22 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝐵 ∈ Fin ↔ ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin)) |
24 | 21, 23 | rspc 2828 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin)) |
25 | 17, 19, 24 | sylc 62 |
. . . . . . . 8
⊢ (𝜑 → ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin) |
26 | | fsum2d.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) |
27 | 26 | ralrimivva 2552 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
28 | | nfcsb1v 3082 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐶 |
29 | 28 | nfel1 2323 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
30 | 20, 29 | nfralxy 2508 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
31 | | csbeq1a 3058 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
32 | 31 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑦 → (𝐶 ∈ ℂ ↔ ⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
33 | 22, 32 | raleqbidv 2677 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ ↔ ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
34 | 30, 33 | rspc 2828 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
35 | 17, 27, 34 | sylc 62 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
36 | 35 | r19.21bi 2558 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) → ⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
37 | 25, 36 | fsumcl 11363 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
38 | | csbeq1 3052 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → ⦋𝑚 / 𝑗⦌𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
39 | | csbeq1 3052 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑦 → ⦋𝑚 / 𝑗⦌𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
40 | 39 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑚 / 𝑗⦌𝐵) → ⦋𝑚 / 𝑗⦌𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
41 | 38, 40 | sumeq12dv 11335 |
. . . . . . . 8
⊢ (𝑚 = 𝑦 → Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
42 | 41 | sumsn 11374 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
43 | 17, 37, 42 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
44 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑚⦋𝑦 / 𝑗⦌𝐶 |
45 | | nfcsb1v 3082 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
46 | | csbeq1a 3058 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ⦋𝑦 / 𝑗⦌𝐶 = ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
47 | 44, 45, 46 | cbvsumi 11325 |
. . . . . . 7
⊢
Σ𝑘 ∈
⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 = Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
48 | | csbeq1 3052 |
. . . . . . . . 9
⊢ (𝑚 = (2nd ‘𝑧) → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
49 | | snfig 6792 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ V → {𝑦} ∈ Fin) |
50 | 49 | elv 2734 |
. . . . . . . . . 10
⊢ {𝑦} ∈ Fin |
51 | | xpfi 6907 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ Fin ∧
⦋𝑦 / 𝑗⦌𝐵 ∈ Fin) → ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ∈ Fin) |
52 | 50, 25, 51 | sylancr 412 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ∈ Fin) |
53 | | 2ndconst 6201 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)):({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)–1-1-onto→⦋𝑦 / 𝑗⦌𝐵) |
54 | 17, 53 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (2nd ↾
({𝑦} ×
⦋𝑦 / 𝑗⦌𝐵)):({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)–1-1-onto→⦋𝑦 / 𝑗⦌𝐵) |
55 | | fvres 5520 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → ((2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))‘𝑧) = (2nd ‘𝑧)) |
56 | 55 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → ((2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))‘𝑧) = (2nd ‘𝑧)) |
57 | 45 | nfel1 2323 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
58 | 46 | eleq1d 2239 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
59 | 57, 58 | rspc 2828 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ⦋𝑦 / 𝑗⦌𝐵 → (∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
60 | 35, 59 | mpan9 279 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ⦋𝑦 / 𝑗⦌𝐵) → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
61 | 48, 52, 54, 56, 60 | fsumf1o 11353 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
62 | | elxp 4628 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ↔ ∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵))) |
63 | | nfv 1521 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗 𝑧 = 〈𝑚, 𝑘〉 |
64 | | nfv 1521 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑚 ∈ {𝑦} |
65 | 20 | nfcri 2306 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵 |
66 | 64, 65 | nfan 1558 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗(𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) |
67 | 63, 66 | nfan 1558 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
68 | 67 | nfex 1630 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
69 | | nfv 1521 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) |
70 | | opeq1 3765 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → 〈𝑚, 𝑘〉 = 〈𝑗, 𝑘〉) |
71 | 70 | eqeq2d 2182 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑗 → (𝑧 = 〈𝑚, 𝑘〉 ↔ 𝑧 = 〈𝑗, 𝑘〉)) |
72 | | velsn 3600 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ {𝑦} ↔ 𝑚 = 𝑦) |
73 | 72 | anbi1i 455 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
74 | | eqtr2 2189 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → 𝑗 = 𝑦) |
75 | 74, 22 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → 𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
76 | 75 | eleq2d 2240 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → (𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
77 | 76 | pm5.32da 449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → ((𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵))) |
78 | 73, 77 | bitr4id 198 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
79 | | equequ1 1705 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → (𝑚 = 𝑦 ↔ 𝑗 = 𝑦)) |
80 | 79 | anbi1d 462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → ((𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵) ↔ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
81 | 78, 80 | bitrd 187 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
82 | 71, 81 | anbi12d 470 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑗 → ((𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ (𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)))) |
83 | 82 | exbidv 1818 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑗 → (∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ ∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)))) |
84 | 68, 69, 83 | cbvex 1749 |
. . . . . . . . . . . 12
⊢
(∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ ∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
85 | 62, 84 | bitri 183 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ↔ ∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
86 | | nfv 1521 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝜑 |
87 | | nfcv 2312 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(2nd ‘𝑧) |
88 | 87, 28 | nfcsb 3086 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
89 | 88 | nfeq2 2324 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝐷 =
⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
90 | | nfv 1521 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝜑 |
91 | | nfcsb1v 3082 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
92 | 91 | nfeq2 2324 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝐷 =
⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
93 | | fsum2d.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) |
94 | 93 | ad2antlr 486 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = 𝐶) |
95 | 31 | ad2antrl 487 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
96 | | fveq2 5496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 〈𝑗, 𝑘〉 → (2nd ‘𝑧) = (2nd
‘〈𝑗, 𝑘〉)) |
97 | | vex 2733 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑗 ∈ V |
98 | | vex 2733 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑘 ∈ V |
99 | 97, 98 | op2nd 6126 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈𝑗, 𝑘〉) = 𝑘 |
100 | 96, 99 | eqtr2di 2220 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝑘 = (2nd ‘𝑧)) |
101 | 100 | ad2antlr 486 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝑘 = (2nd ‘𝑧)) |
102 | | csbeq1a 3058 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (2nd ‘𝑧) → ⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
103 | 101, 102 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → ⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
104 | 94, 95, 103 | 3eqtrd 2207 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
105 | 104 | expl 376 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
106 | 90, 92, 105 | exlimd 1590 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
107 | 86, 89, 106 | exlimd 1590 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
108 | 85, 107 | syl5bi 151 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
109 | 108 | imp 123 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
110 | 109 | sumeq2dv 11331 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
111 | 61, 110 | eqtr4d 2206 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
112 | 47, 111 | eqtrid 2215 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
113 | 43, 112 | eqtrd 2203 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
114 | 12, 113 | eqtrid 2215 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
115 | 114 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
116 | 3, 115 | oveq12d 5871 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶) = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
117 | | fsum2d.5 |
. . . . 5
⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥) |
118 | | disjsn 3645 |
. . . . 5
⊢ ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑥) |
119 | 117, 118 | sylibr 133 |
. . . 4
⊢ (𝜑 → (𝑥 ∩ {𝑦}) = ∅) |
120 | | eqidd 2171 |
. . . 4
⊢ (𝜑 → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦})) |
121 | | fsum2dlemstep.x |
. . . . 5
⊢ (𝜑 → 𝑥 ∈ Fin) |
122 | 50 | a1i 9 |
. . . . 5
⊢ (𝜑 → {𝑦} ∈ Fin) |
123 | | unfidisj 6899 |
. . . . 5
⊢ ((𝑥 ∈ Fin ∧ {𝑦} ∈ Fin ∧ (𝑥 ∩ {𝑦}) = ∅) → (𝑥 ∪ {𝑦}) ∈ Fin) |
124 | 121, 122,
119, 123 | syl3anc 1233 |
. . . 4
⊢ (𝜑 → (𝑥 ∪ {𝑦}) ∈ Fin) |
125 | 13 | sselda 3147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝑗 ∈ 𝐴) |
126 | 26 | anassrs 398 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
127 | 18, 126 | fsumcl 11363 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
128 | 125, 127 | syldan 280 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → Σ𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
129 | 119, 120,
124, 128 | fsumsplit 11370 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶)) |
130 | 129 | adantr 274 |
. 2
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶)) |
131 | | eliun 3877 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ↔ ∃𝑗 ∈ 𝑥 𝑧 ∈ ({𝑗} × 𝐵)) |
132 | | xp1st 6144 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ {𝑗}) |
133 | | elsni 3601 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑧) ∈ {𝑗} → (1st ‘𝑧) = 𝑗) |
134 | 132, 133 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) = 𝑗) |
135 | 134 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (1st ‘𝑧) = 𝑗) |
136 | | simpl 108 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑗 ∈ 𝑥) |
137 | 135, 136 | eqeltrd 2247 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (1st ‘𝑧) ∈ 𝑥) |
138 | 137 | rexlimiva 2582 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
𝑥 𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ 𝑥) |
139 | 131, 138 | sylbi 120 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ 𝑥) |
140 | | xp1st 6144 |
. . . . . . . . 9
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → (1st ‘𝑧) ∈ {𝑦}) |
141 | 139, 140 | anim12i 336 |
. . . . . . . 8
⊢ ((𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → ((1st ‘𝑧) ∈ 𝑥 ∧ (1st ‘𝑧) ∈ {𝑦})) |
142 | | elin 3310 |
. . . . . . . 8
⊢ (𝑧 ∈ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ↔ (𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))) |
143 | | elin 3310 |
. . . . . . . 8
⊢
((1st ‘𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ ((1st ‘𝑧) ∈ 𝑥 ∧ (1st ‘𝑧) ∈ {𝑦})) |
144 | 141, 142,
143 | 3imtr4i 200 |
. . . . . . 7
⊢ (𝑧 ∈ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → (1st ‘𝑧) ∈ (𝑥 ∩ {𝑦})) |
145 | 119 | eleq2d 2240 |
. . . . . . . 8
⊢ (𝜑 → ((1st
‘𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ (1st ‘𝑧) ∈
∅)) |
146 | | noel 3418 |
. . . . . . . . 9
⊢ ¬
(1st ‘𝑧)
∈ ∅ |
147 | 146 | pm2.21i 641 |
. . . . . . . 8
⊢
((1st ‘𝑧) ∈ ∅ → 𝑧 ∈ ∅) |
148 | 145, 147 | syl6bi 162 |
. . . . . . 7
⊢ (𝜑 → ((1st
‘𝑧) ∈ (𝑥 ∩ {𝑦}) → 𝑧 ∈ ∅)) |
149 | 144, 148 | syl5 32 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → 𝑧 ∈ ∅)) |
150 | 149 | ssrdv 3153 |
. . . . 5
⊢ (𝜑 → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ⊆ ∅) |
151 | | ss0 3455 |
. . . . 5
⊢
((∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ⊆ ∅ → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) = ∅) |
152 | 150, 151 | syl 14 |
. . . 4
⊢ (𝜑 → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) = ∅) |
153 | | iunxun 3952 |
. . . . . 6
⊢ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ∪
𝑗 ∈ {𝑦} ({𝑗} × 𝐵)) |
154 | | nfcv 2312 |
. . . . . . . . 9
⊢
Ⅎ𝑚({𝑗} × 𝐵) |
155 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑗{𝑚} |
156 | 155, 5 | nfxp 4638 |
. . . . . . . . 9
⊢
Ⅎ𝑗({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) |
157 | | sneq 3594 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → {𝑗} = {𝑚}) |
158 | 157, 8 | xpeq12d 4636 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → ({𝑗} × 𝐵) = ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵)) |
159 | 154, 156,
158 | cbviun 3910 |
. . . . . . . 8
⊢ ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = ∪
𝑚 ∈ {𝑦} ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) |
160 | | sneq 3594 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑦 → {𝑚} = {𝑦}) |
161 | 160, 38 | xpeq12d 4636 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
162 | 15, 161 | iunxsn 3949 |
. . . . . . . 8
⊢ ∪ 𝑚 ∈ {𝑦} ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) |
163 | 159, 162 | eqtri 2191 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) |
164 | 163 | uneq2i 3278 |
. . . . . 6
⊢ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ∪
𝑗 ∈ {𝑦} ({𝑗} × 𝐵)) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
165 | 153, 164 | eqtri 2191 |
. . . . 5
⊢ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
166 | 165 | a1i 9 |
. . . 4
⊢ (𝜑 → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))) |
167 | | snfig 6792 |
. . . . . . . 8
⊢ (𝑗 ∈ V → {𝑗} ∈ Fin) |
168 | 167 | elv 2734 |
. . . . . . 7
⊢ {𝑗} ∈ Fin |
169 | 125, 18 | syldan 280 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ Fin) |
170 | | xpfi 6907 |
. . . . . . 7
⊢ (({𝑗} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑗} × 𝐵) ∈ Fin) |
171 | 168, 169,
170 | sylancr 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → ({𝑗} × 𝐵) ∈ Fin) |
172 | 171 | ralrimiva 2543 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
173 | | disjsnxp 6216 |
. . . . . 6
⊢
Disj 𝑗 ∈
(𝑥 ∪ {𝑦})({𝑗} × 𝐵) |
174 | 173 | a1i 9 |
. . . . 5
⊢ (𝜑 → Disj 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) |
175 | | iunfidisj 6923 |
. . . . 5
⊢ (((𝑥 ∪ {𝑦}) ∈ Fin ∧ ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin ∧ Disj 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
176 | 124, 172,
174, 175 | syl3anc 1233 |
. . . 4
⊢ (𝜑 → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
177 | | eliun 3877 |
. . . . . 6
⊢ (𝑧 ∈ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ↔ ∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵)) |
178 | | elxp 4628 |
. . . . . . . 8
⊢ (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) |
179 | | simprl 526 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑧 = 〈𝑚, 𝑘〉) |
180 | | simprrl 534 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑚 ∈ {𝑗}) |
181 | | elsni 3601 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {𝑗} → 𝑚 = 𝑗) |
182 | 180, 181 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑚 = 𝑗) |
183 | 182 | opeq1d 3771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 〈𝑚, 𝑘〉 = 〈𝑗, 𝑘〉) |
184 | 179, 183 | eqtrd 2203 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑧 = 〈𝑗, 𝑘〉) |
185 | 184, 93 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐷 = 𝐶) |
186 | | simpll 524 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝜑) |
187 | 125 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑗 ∈ 𝐴) |
188 | | simprrr 535 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑘 ∈ 𝐵) |
189 | 186, 187,
188, 26 | syl12anc 1231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐶 ∈ ℂ) |
190 | 185, 189 | eqeltrd 2247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐷 ∈ ℂ) |
191 | 190 | ex 114 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → ((𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵)) → 𝐷 ∈ ℂ)) |
192 | 191 | exlimdvv 1890 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → (∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵)) → 𝐷 ∈ ℂ)) |
193 | 178, 192 | syl5bi 151 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → (𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
194 | 193 | rexlimdva 2587 |
. . . . . 6
⊢ (𝜑 → (∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
195 | 177, 194 | syl5bi 151 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
196 | 195 | imp 123 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) → 𝐷 ∈ ℂ) |
197 | 152, 166,
176, 196 | fsumsplit 11370 |
. . 3
⊢ (𝜑 → Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
198 | 197 | adantr 274 |
. 2
⊢ ((𝜑 ∧ 𝜓) → Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
199 | 116, 130,
198 | 3eqtr4d 2213 |
1
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) |