ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alxfr GIF version

Theorem alxfr 4439
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.)
Hypothesis
Ref Expression
alxfr.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
alxfr ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem alxfr
StepHypRef Expression
1 alxfr.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
21spcgv 2813 . . . . . 6 (𝐴𝐵 → (∀𝑥𝜑𝜓))
32com12 30 . . . . 5 (∀𝑥𝜑 → (𝐴𝐵𝜓))
43alimdv 1867 . . . 4 (∀𝑥𝜑 → (∀𝑦 𝐴𝐵 → ∀𝑦𝜓))
54com12 30 . . 3 (∀𝑦 𝐴𝐵 → (∀𝑥𝜑 → ∀𝑦𝜓))
65adantr 274 . 2 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 → ∀𝑦𝜓))
7 nfa1 1529 . . . . . 6 𝑦𝑦𝜓
8 nfv 1516 . . . . . 6 𝑦𝜑
9 sp 1499 . . . . . . 7 (∀𝑦𝜓𝜓)
109, 1syl5ibrcom 156 . . . . . 6 (∀𝑦𝜓 → (𝑥 = 𝐴𝜑))
117, 8, 10exlimd 1585 . . . . 5 (∀𝑦𝜓 → (∃𝑦 𝑥 = 𝐴𝜑))
1211alimdv 1867 . . . 4 (∀𝑦𝜓 → (∀𝑥𝑦 𝑥 = 𝐴 → ∀𝑥𝜑))
1312com12 30 . . 3 (∀𝑥𝑦 𝑥 = 𝐴 → (∀𝑦𝜓 → ∀𝑥𝜑))
1413adantl 275 . 2 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑦𝜓 → ∀𝑥𝜑))
156, 14impbid 128 1 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator