ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn GIF version

Theorem fsn 5668
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
fsn.1 𝐴 ∈ V
fsn.2 𝐵 ∈ V
Assertion
Ref Expression
fsn (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})

Proof of Theorem fsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelf 5369 . . . . . . . 8 ((𝐹:{𝐴}⟶{𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}))
2 velsn 3600 . . . . . . . . 9 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velsn 3600 . . . . . . . . 9 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
42, 3anbi12i 457 . . . . . . . 8 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑦 = 𝐵))
51, 4sylib 121 . . . . . . 7 ((𝐹:{𝐴}⟶{𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥 = 𝐴𝑦 = 𝐵))
65ex 114 . . . . . 6 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 = 𝐴𝑦 = 𝐵)))
7 fsn.1 . . . . . . . . . 10 𝐴 ∈ V
87snid 3614 . . . . . . . . 9 𝐴 ∈ {𝐴}
9 feu 5380 . . . . . . . . 9 ((𝐹:{𝐴}⟶{𝐵} ∧ 𝐴 ∈ {𝐴}) → ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
108, 9mpan2 423 . . . . . . . 8 (𝐹:{𝐴}⟶{𝐵} → ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
113anbi1i 455 . . . . . . . . . . 11 ((𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
12 opeq2 3766 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1312eleq1d 2239 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
1413pm5.32i 451 . . . . . . . . . . . 12 ((𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (𝑦 = 𝐵 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
15 ancom 264 . . . . . . . . . . . 12 ((⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ (𝑦 = 𝐵 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
1614, 15bitr4i 186 . . . . . . . . . . 11 ((𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵))
1711, 16bitr2i 184 . . . . . . . . . 10 ((⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ (𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
1817eubii 2028 . . . . . . . . 9 (∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ ∃!𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
19 fsn.2 . . . . . . . . . . . 12 𝐵 ∈ V
2019eueq1 2902 . . . . . . . . . . 11 ∃!𝑦 𝑦 = 𝐵
2120biantru 300 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹 ∧ ∃!𝑦 𝑦 = 𝐵))
22 euanv 2076 . . . . . . . . . 10 (∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹 ∧ ∃!𝑦 𝑦 = 𝐵))
2321, 22bitr4i 186 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵))
24 df-reu 2455 . . . . . . . . 9 (∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
2518, 23, 243bitr4i 211 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
2610, 25sylibr 133 . . . . . . 7 (𝐹:{𝐴}⟶{𝐵} → ⟨𝐴, 𝐵⟩ ∈ 𝐹)
27 opeq12 3767 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2827eleq1d 2239 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
2926, 28syl5ibrcom 156 . . . . . 6 (𝐹:{𝐴}⟶{𝐵} → ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝐹))
306, 29impbid 128 . . . . 5 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑥 = 𝐴𝑦 = 𝐵)))
31 vex 2733 . . . . . . . 8 𝑥 ∈ V
32 vex 2733 . . . . . . . 8 𝑦 ∈ V
3331, 32opex 4214 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
3433elsn 3599 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
357, 19opth2 4225 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
3634, 35bitr2i 184 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
3730, 36bitrdi 195 . . . 4 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}))
3837alrimivv 1868 . . 3 (𝐹:{𝐴}⟶{𝐵} → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}))
39 frel 5352 . . . 4 (𝐹:{𝐴}⟶{𝐵} → Rel 𝐹)
407, 19relsnop 4717 . . . 4 Rel {⟨𝐴, 𝐵⟩}
41 eqrel 4700 . . . 4 ((Rel 𝐹 ∧ Rel {⟨𝐴, 𝐵⟩}) → (𝐹 = {⟨𝐴, 𝐵⟩} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})))
4239, 40, 41sylancl 411 . . 3 (𝐹:{𝐴}⟶{𝐵} → (𝐹 = {⟨𝐴, 𝐵⟩} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})))
4338, 42mpbird 166 . 2 (𝐹:{𝐴}⟶{𝐵} → 𝐹 = {⟨𝐴, 𝐵⟩})
447, 19f1osn 5482 . . . 4 {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
45 f1oeq1 5431 . . . 4 (𝐹 = {⟨𝐴, 𝐵⟩} → (𝐹:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
4644, 45mpbiri 167 . . 3 (𝐹 = {⟨𝐴, 𝐵⟩} → 𝐹:{𝐴}–1-1-onto→{𝐵})
47 f1of 5442 . . 3 (𝐹:{𝐴}–1-1-onto→{𝐵} → 𝐹:{𝐴}⟶{𝐵})
4846, 47syl 14 . 2 (𝐹 = {⟨𝐴, 𝐵⟩} → 𝐹:{𝐴}⟶{𝐵})
4943, 48impbii 125 1 (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1346   = wceq 1348  ∃!weu 2019  wcel 2141  ∃!wreu 2450  Vcvv 2730  {csn 3583  cop 3586  Rel wrel 4616  wf 5194  1-1-ontowf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by:  fsng  5669  mapsn  6668
  Copyright terms: Public domain W3C validator