| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdm | GIF version | ||
| Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5472 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5419 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 dom cdm 4718 Fn wfn 5312 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5320 df-f 5321 |
| This theorem is referenced by: fdmd 5479 fdmi 5480 fssxp 5490 ffdm 5493 dmfex 5514 f00 5516 f0dom0 5518 f0rn0 5519 foima 5552 fimadmfo 5556 foco 5558 resdif 5593 fimacnv 5763 dff3im 5779 ffvresb 5797 resflem 5798 fmptco 5800 focdmex 6258 issmo2 6433 smoiso 6446 tfrcllemubacc 6503 rdgon 6530 frecabcl 6543 frecsuclem 6550 mapprc 6797 elpm2r 6811 map0b 6832 mapsn 6835 brdomg 6895 pw2f1odclem 6991 fopwdom 6993 casef 7251 nn0supp 9417 frecuzrdgdomlem 10634 frecuzrdgsuctlem 10640 zfz1isolemiso 11056 ennnfonelemex 12980 intopsn 13395 iscnp3 14871 cnpnei 14887 cnntr 14893 cncnp 14898 cndis 14909 psmetdmdm 14992 xmetres 15050 metres 15051 metcnp 15180 dvcj 15377 wlkm 16038 nninfall 16334 |
| Copyright terms: Public domain | W3C validator |