Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fdm | GIF version |
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5347 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5297 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 dom cdm 4611 Fn wfn 5193 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5201 df-f 5202 |
This theorem is referenced by: fdmd 5354 fdmi 5355 fssxp 5365 ffdm 5368 dmfex 5387 f00 5389 f0dom0 5391 f0rn0 5392 foima 5425 foco 5430 resdif 5464 fimacnv 5625 dff3im 5641 ffvresb 5659 resflem 5660 fmptco 5662 fornex 6094 issmo2 6268 smoiso 6281 tfrcllemubacc 6338 rdgon 6365 frecabcl 6378 frecsuclem 6385 mapprc 6630 elpm2r 6644 map0b 6665 mapsn 6668 brdomg 6726 fopwdom 6814 casef 7065 nn0supp 9187 frecuzrdgdomlem 10373 frecuzrdgsuctlem 10379 zfz1isolemiso 10774 ennnfonelemex 12369 intopsn 12621 iscnp3 12997 cnpnei 13013 cnntr 13019 cncnp 13024 cndis 13035 psmetdmdm 13118 xmetres 13176 metres 13177 metcnp 13306 dvcj 13467 nninfall 14042 |
Copyright terms: Public domain | W3C validator |