ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdm GIF version

Theorem fdm 5416
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fdm (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem fdm
StepHypRef Expression
1 ffn 5410 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fndm 5358 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  dom cdm 4664   Fn wfn 5254  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5262  df-f 5263
This theorem is referenced by:  fdmd  5417  fdmi  5418  fssxp  5428  ffdm  5431  dmfex  5450  f00  5452  f0dom0  5454  f0rn0  5455  foima  5488  fimadmfo  5492  foco  5494  resdif  5529  fimacnv  5694  dff3im  5710  ffvresb  5728  resflem  5729  fmptco  5731  focdmex  6181  issmo2  6356  smoiso  6369  tfrcllemubacc  6426  rdgon  6453  frecabcl  6466  frecsuclem  6473  mapprc  6720  elpm2r  6734  map0b  6755  mapsn  6758  brdomg  6816  pw2f1odclem  6904  fopwdom  6906  casef  7163  nn0supp  9320  frecuzrdgdomlem  10528  frecuzrdgsuctlem  10534  zfz1isolemiso  10950  ennnfonelemex  12658  intopsn  13071  iscnp3  14547  cnpnei  14563  cnntr  14569  cncnp  14574  cndis  14585  psmetdmdm  14668  xmetres  14726  metres  14727  metcnp  14856  dvcj  15053  nninfall  15764
  Copyright terms: Public domain W3C validator