Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fdm | GIF version |
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5337 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5287 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 dom cdm 4604 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5191 df-f 5192 |
This theorem is referenced by: fdmd 5344 fdmi 5345 fssxp 5355 ffdm 5358 dmfex 5377 f00 5379 f0dom0 5381 f0rn0 5382 foima 5415 foco 5420 resdif 5454 fimacnv 5614 dff3im 5630 ffvresb 5648 resflem 5649 fmptco 5651 fornex 6083 issmo2 6257 smoiso 6270 tfrcllemubacc 6327 rdgon 6354 frecabcl 6367 frecsuclem 6374 mapprc 6618 elpm2r 6632 map0b 6653 mapsn 6656 brdomg 6714 fopwdom 6802 casef 7053 nn0supp 9166 frecuzrdgdomlem 10352 frecuzrdgsuctlem 10358 zfz1isolemiso 10752 ennnfonelemex 12347 intopsn 12598 iscnp3 12853 cnpnei 12869 cnntr 12875 cncnp 12880 cndis 12891 psmetdmdm 12974 xmetres 13032 metres 13033 metcnp 13162 dvcj 13323 nninfall 13899 |
Copyright terms: Public domain | W3C validator |