![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fdm | GIF version |
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5230 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5180 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 dom cdm 4499 Fn wfn 5076 ⟶wf 5077 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5084 df-f 5085 |
This theorem is referenced by: fdmd 5237 fdmi 5238 fssxp 5248 ffdm 5251 dmfex 5270 f00 5272 f0dom0 5274 f0rn0 5275 foima 5308 foco 5313 resdif 5345 fimacnv 5503 dff3im 5519 ffvresb 5537 resflem 5538 fmptco 5540 fornex 5967 issmo2 6140 smoiso 6153 tfrcllemubacc 6210 rdgon 6237 frecabcl 6250 frecsuclem 6257 mapprc 6500 elpm2r 6514 map0b 6535 mapsn 6538 brdomg 6596 fopwdom 6683 casef 6925 nn0supp 8933 frecuzrdgdomlem 10083 frecuzrdgsuctlem 10089 zfz1isolemiso 10475 ennnfonelemex 11772 iscnp3 12214 cnpnei 12230 cnntr 12236 cncnp 12241 cndis 12252 psmetdmdm 12313 xmetres 12371 metres 12372 metcnp 12501 nninfall 12896 |
Copyright terms: Public domain | W3C validator |