| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdm | GIF version | ||
| Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5424 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5372 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 dom cdm 4674 Fn wfn 5265 ⟶wf 5266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5273 df-f 5274 |
| This theorem is referenced by: fdmd 5431 fdmi 5432 fssxp 5442 ffdm 5445 dmfex 5464 f00 5466 f0dom0 5468 f0rn0 5469 foima 5502 fimadmfo 5506 foco 5508 resdif 5543 fimacnv 5708 dff3im 5724 ffvresb 5742 resflem 5743 fmptco 5745 focdmex 6199 issmo2 6374 smoiso 6387 tfrcllemubacc 6444 rdgon 6471 frecabcl 6484 frecsuclem 6491 mapprc 6738 elpm2r 6752 map0b 6773 mapsn 6776 brdomg 6836 pw2f1odclem 6930 fopwdom 6932 casef 7189 nn0supp 9346 frecuzrdgdomlem 10560 frecuzrdgsuctlem 10566 zfz1isolemiso 10982 ennnfonelemex 12727 intopsn 13141 iscnp3 14617 cnpnei 14633 cnntr 14639 cncnp 14644 cndis 14655 psmetdmdm 14738 xmetres 14796 metres 14797 metcnp 14926 dvcj 15123 nninfall 15879 |
| Copyright terms: Public domain | W3C validator |