| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fdm | GIF version | ||
| Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffn 5407 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5357 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4663 Fn wfn 5253 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: fdmd 5414 fdmi 5415 fssxp 5425 ffdm 5428 dmfex 5447 f00 5449 f0dom0 5451 f0rn0 5452 foima 5485 fimadmfo 5489 foco 5491 resdif 5526 fimacnv 5691 dff3im 5707 ffvresb 5725 resflem 5726 fmptco 5728 focdmex 6172 issmo2 6347 smoiso 6360 tfrcllemubacc 6417 rdgon 6444 frecabcl 6457 frecsuclem 6464 mapprc 6711 elpm2r 6725 map0b 6746 mapsn 6749 brdomg 6807 pw2f1odclem 6895 fopwdom 6897 casef 7154 nn0supp 9301 frecuzrdgdomlem 10509 frecuzrdgsuctlem 10515 zfz1isolemiso 10931 ennnfonelemex 12631 intopsn 13010 iscnp3 14439 cnpnei 14455 cnntr 14461 cncnp 14466 cndis 14477 psmetdmdm 14560 xmetres 14618 metres 14619 metcnp 14748 dvcj 14945 nninfall 15653 | 
| Copyright terms: Public domain | W3C validator |