ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdm GIF version

Theorem fdm 5373
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fdm (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem fdm
StepHypRef Expression
1 ffn 5367 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fndm 5317 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  dom cdm 4628   Fn wfn 5213  wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5221  df-f 5222
This theorem is referenced by:  fdmd  5374  fdmi  5375  fssxp  5385  ffdm  5388  dmfex  5407  f00  5409  f0dom0  5411  f0rn0  5412  foima  5445  foco  5450  resdif  5485  fimacnv  5647  dff3im  5663  ffvresb  5681  resflem  5682  fmptco  5684  focdmex  6118  issmo2  6292  smoiso  6305  tfrcllemubacc  6362  rdgon  6389  frecabcl  6402  frecsuclem  6409  mapprc  6654  elpm2r  6668  map0b  6689  mapsn  6692  brdomg  6750  fopwdom  6838  casef  7089  nn0supp  9230  frecuzrdgdomlem  10419  frecuzrdgsuctlem  10425  zfz1isolemiso  10821  ennnfonelemex  12417  intopsn  12791  iscnp3  13788  cnpnei  13804  cnntr  13810  cncnp  13815  cndis  13826  psmetdmdm  13909  xmetres  13967  metres  13968  metcnp  14097  dvcj  14258  nninfall  14843
  Copyright terms: Public domain W3C validator