| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdm | GIF version | ||
| Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5435 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5382 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 dom cdm 4683 Fn wfn 5275 ⟶wf 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5283 df-f 5284 |
| This theorem is referenced by: fdmd 5442 fdmi 5443 fssxp 5453 ffdm 5456 dmfex 5477 f00 5479 f0dom0 5481 f0rn0 5482 foima 5515 fimadmfo 5519 foco 5521 resdif 5556 fimacnv 5722 dff3im 5738 ffvresb 5756 resflem 5757 fmptco 5759 focdmex 6213 issmo2 6388 smoiso 6401 tfrcllemubacc 6458 rdgon 6485 frecabcl 6498 frecsuclem 6505 mapprc 6752 elpm2r 6766 map0b 6787 mapsn 6790 brdomg 6850 pw2f1odclem 6946 fopwdom 6948 casef 7205 nn0supp 9367 frecuzrdgdomlem 10584 frecuzrdgsuctlem 10590 zfz1isolemiso 11006 ennnfonelemex 12860 intopsn 13274 iscnp3 14750 cnpnei 14766 cnntr 14772 cncnp 14777 cndis 14788 psmetdmdm 14871 xmetres 14929 metres 14930 metcnp 15059 dvcj 15256 nninfall 16087 |
| Copyright terms: Public domain | W3C validator |