| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdm | GIF version | ||
| Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5358 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4664 Fn wfn 5254 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 df-f 5263 |
| This theorem is referenced by: fdmd 5417 fdmi 5418 fssxp 5428 ffdm 5431 dmfex 5450 f00 5452 f0dom0 5454 f0rn0 5455 foima 5488 fimadmfo 5492 foco 5494 resdif 5529 fimacnv 5694 dff3im 5710 ffvresb 5728 resflem 5729 fmptco 5731 focdmex 6181 issmo2 6356 smoiso 6369 tfrcllemubacc 6426 rdgon 6453 frecabcl 6466 frecsuclem 6473 mapprc 6720 elpm2r 6734 map0b 6755 mapsn 6758 brdomg 6816 pw2f1odclem 6904 fopwdom 6906 casef 7163 nn0supp 9318 frecuzrdgdomlem 10526 frecuzrdgsuctlem 10532 zfz1isolemiso 10948 ennnfonelemex 12656 intopsn 13069 iscnp3 14523 cnpnei 14539 cnntr 14545 cncnp 14550 cndis 14561 psmetdmdm 14644 xmetres 14702 metres 14703 metcnp 14832 dvcj 15029 nninfall 15740 |
| Copyright terms: Public domain | W3C validator |