![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fdm | GIF version |
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5404 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5354 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 dom cdm 4660 Fn wfn 5250 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fn 5258 df-f 5259 |
This theorem is referenced by: fdmd 5411 fdmi 5412 fssxp 5422 ffdm 5425 dmfex 5444 f00 5446 f0dom0 5448 f0rn0 5449 foima 5482 fimadmfo 5486 foco 5488 resdif 5523 fimacnv 5688 dff3im 5704 ffvresb 5722 resflem 5723 fmptco 5725 focdmex 6169 issmo2 6344 smoiso 6357 tfrcllemubacc 6414 rdgon 6441 frecabcl 6454 frecsuclem 6461 mapprc 6708 elpm2r 6722 map0b 6743 mapsn 6746 brdomg 6804 pw2f1odclem 6892 fopwdom 6894 casef 7149 nn0supp 9295 frecuzrdgdomlem 10491 frecuzrdgsuctlem 10497 zfz1isolemiso 10913 ennnfonelemex 12574 intopsn 12953 iscnp3 14382 cnpnei 14398 cnntr 14404 cncnp 14409 cndis 14420 psmetdmdm 14503 xmetres 14561 metres 14562 metcnp 14691 dvcj 14888 nninfall 15569 |
Copyright terms: Public domain | W3C validator |