| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdm | GIF version | ||
| Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fdm | ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5419 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5367 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 dom cdm 4673 Fn wfn 5263 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5271 df-f 5272 |
| This theorem is referenced by: fdmd 5426 fdmi 5427 fssxp 5437 ffdm 5440 dmfex 5459 f00 5461 f0dom0 5463 f0rn0 5464 foima 5497 fimadmfo 5501 foco 5503 resdif 5538 fimacnv 5703 dff3im 5719 ffvresb 5737 resflem 5738 fmptco 5740 focdmex 6190 issmo2 6365 smoiso 6378 tfrcllemubacc 6435 rdgon 6462 frecabcl 6475 frecsuclem 6482 mapprc 6729 elpm2r 6743 map0b 6764 mapsn 6767 brdomg 6825 pw2f1odclem 6913 fopwdom 6915 casef 7172 nn0supp 9329 frecuzrdgdomlem 10543 frecuzrdgsuctlem 10549 zfz1isolemiso 10965 ennnfonelemex 12704 intopsn 13117 iscnp3 14593 cnpnei 14609 cnntr 14615 cncnp 14620 cndis 14631 psmetdmdm 14714 xmetres 14772 metres 14773 metcnp 14902 dvcj 15099 nninfall 15810 |
| Copyright terms: Public domain | W3C validator |