| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9623 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | frel 5415 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
| 4 | relelfvdm 5593 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
| 5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
| 6 | 1 | fdmi 5418 | . 2 ⊢ dom ℤ≥ = ℤ |
| 7 | 5, 6 | eleqtrdi 2289 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 𝒫 cpw 3606 dom cdm 4664 Rel wrel 4669 ⟶wf 5255 ‘cfv 5259 ℤcz 9345 ℤ≥cuz 9620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7989 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-neg 8219 df-z 9346 df-uz 9621 |
| This theorem is referenced by: eluz2 9626 uztrn 9637 uzneg 9639 uzss 9641 uz11 9643 eluzadd 9649 uzm1 9651 uzin 9653 uzind4 9681 elfz5 10111 elfzel1 10118 eluzfz1 10125 fzsplit2 10144 fzopth 10155 fzpred 10164 fzpreddisj 10165 fzdifsuc 10175 uzsplit 10186 uzdisj 10187 elfzp12 10193 fzm1 10194 uznfz 10197 nn0disj 10232 fzolb 10248 fzoss2 10267 fzouzdisj 10275 ige2m2fzo 10293 elfzonelfzo 10325 frec2uzrand 10516 frecfzen2 10538 seq3p1 10576 seqp1cd 10581 seq3clss 10582 seq3feq2 10587 seqfveqg 10589 seq3fveq 10590 seq3shft2 10592 seqshft2g 10593 ser3mono 10598 seq3split 10599 seqsplitg 10600 seq3caopr3 10602 seqcaopr3g 10603 seq3caopr2 10604 seq3f1olemp 10626 seq3f1oleml 10627 seq3f1o 10628 seqf1oglem2a 10629 seqf1oglem1 10630 seqf1oglem2 10631 seqf1og 10632 seq3id3 10635 seq3id 10636 seq3homo 10638 seq3z 10639 seqhomog 10641 seqfeq4g 10642 seq3distr 10643 ser3ge0 10647 ser3le 10648 leexp2a 10703 hashfz 10932 hashfzo 10933 hashfzp1 10935 seq3coll 10953 rexanuz2 11175 cau4 11300 clim2ser 11521 clim2ser2 11522 climserle 11529 fsum3cvg 11562 fsum3cvg2 11578 fsumsersdc 11579 fsum3ser 11581 fsumm1 11600 fsum1p 11602 telfsumo 11650 fsumparts 11654 cvgcmpub 11660 isumsplit 11675 cvgratnnlemmn 11709 clim2prod 11723 clim2divap 11724 prodfrecap 11730 prodfdivap 11731 ntrivcvgap 11732 fproddccvg 11756 fprodm1 11782 fprodabs 11800 fprodeq0 11801 uzwodc 12231 pcaddlem 12535 fngsum 13092 igsumvalx 13093 gsumfzval 13095 gsumval2 13101 gsumfzz 13199 gsumfzconst 13549 gsumfzfsumlemm 14221 inffz 15829 |
| Copyright terms: Public domain | W3C validator |