![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9598 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | frel 5409 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
4 | relelfvdm 5587 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
6 | 1 | fdmi 5412 | . 2 ⊢ dom ℤ≥ = ℤ |
7 | 5, 6 | eleqtrdi 2286 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 𝒫 cpw 3602 dom cdm 4660 Rel wrel 4665 ⟶wf 5251 ‘cfv 5255 ℤcz 9320 ℤ≥cuz 9595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-neg 8195 df-z 9321 df-uz 9596 |
This theorem is referenced by: eluz2 9601 uztrn 9612 uzneg 9614 uzss 9616 uz11 9618 eluzadd 9624 uzm1 9626 uzin 9628 uzind4 9656 elfz5 10086 elfzel1 10093 eluzfz1 10100 fzsplit2 10119 fzopth 10130 fzpred 10139 fzpreddisj 10140 fzdifsuc 10150 uzsplit 10161 uzdisj 10162 elfzp12 10168 fzm1 10169 uznfz 10172 nn0disj 10207 fzolb 10223 fzoss2 10242 fzouzdisj 10250 ige2m2fzo 10268 elfzonelfzo 10300 frec2uzrand 10479 frecfzen2 10501 seq3p1 10539 seqp1cd 10544 seq3clss 10545 seq3feq2 10550 seqfveqg 10552 seq3fveq 10553 seq3shft2 10555 seqshft2g 10556 ser3mono 10561 seq3split 10562 seqsplitg 10563 seq3caopr3 10565 seqcaopr3g 10566 seq3caopr2 10567 seq3f1olemp 10589 seq3f1oleml 10590 seq3f1o 10591 seqf1oglem2a 10592 seqf1oglem1 10593 seqf1oglem2 10594 seqf1og 10595 seq3id3 10598 seq3id 10599 seq3homo 10601 seq3z 10602 seqhomog 10604 seqfeq4g 10605 seq3distr 10606 ser3ge0 10610 ser3le 10611 leexp2a 10666 hashfz 10895 hashfzo 10896 hashfzp1 10898 seq3coll 10916 rexanuz2 11138 cau4 11263 clim2ser 11483 clim2ser2 11484 climserle 11491 fsum3cvg 11524 fsum3cvg2 11540 fsumsersdc 11541 fsum3ser 11543 fsumm1 11562 fsum1p 11564 telfsumo 11612 fsumparts 11616 cvgcmpub 11622 isumsplit 11637 cvgratnnlemmn 11671 clim2prod 11685 clim2divap 11686 prodfrecap 11692 prodfdivap 11693 ntrivcvgap 11694 fproddccvg 11718 fprodm1 11744 fprodabs 11762 fprodeq0 11763 uzwodc 12177 pcaddlem 12480 fngsum 12974 igsumvalx 12975 gsumfzval 12977 gsumval2 12983 gsumfzz 13070 gsumfzconst 13414 gsumfzfsumlemm 14086 inffz 15632 |
Copyright terms: Public domain | W3C validator |