| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9651 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | frel 5430 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
| 4 | relelfvdm 5608 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
| 5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
| 6 | 1 | fdmi 5433 | . 2 ⊢ dom ℤ≥ = ℤ |
| 7 | 5, 6 | eleqtrdi 2298 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 𝒫 cpw 3616 dom cdm 4675 Rel wrel 4680 ⟶wf 5267 ‘cfv 5271 ℤcz 9372 ℤ≥cuz 9648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-neg 8246 df-z 9373 df-uz 9649 |
| This theorem is referenced by: eluz2 9654 uztrn 9665 uzneg 9667 uzss 9669 uz11 9671 eluzadd 9677 uzm1 9679 uzin 9681 uzind4 9709 elfz5 10139 elfzel1 10146 eluzfz1 10153 fzsplit2 10172 fzopth 10183 fzpred 10192 fzpreddisj 10193 fzdifsuc 10203 uzsplit 10214 uzdisj 10215 elfzp12 10221 fzm1 10222 uznfz 10225 nn0disj 10260 fzolb 10276 fzoss2 10296 fzouzdisj 10304 ige2m2fzo 10327 elfzonelfzo 10359 frec2uzrand 10550 frecfzen2 10572 seq3p1 10610 seqp1cd 10615 seq3clss 10616 seq3feq2 10621 seqfveqg 10623 seq3fveq 10624 seq3shft2 10626 seqshft2g 10627 ser3mono 10632 seq3split 10633 seqsplitg 10634 seq3caopr3 10636 seqcaopr3g 10637 seq3caopr2 10638 seq3f1olemp 10660 seq3f1oleml 10661 seq3f1o 10662 seqf1oglem2a 10663 seqf1oglem1 10664 seqf1oglem2 10665 seqf1og 10666 seq3id3 10669 seq3id 10670 seq3homo 10672 seq3z 10673 seqhomog 10675 seqfeq4g 10676 seq3distr 10677 ser3ge0 10681 ser3le 10682 leexp2a 10737 hashfz 10966 hashfzo 10967 hashfzp1 10969 seq3coll 10987 rexanuz2 11302 cau4 11427 clim2ser 11648 clim2ser2 11649 climserle 11656 fsum3cvg 11689 fsum3cvg2 11705 fsumsersdc 11706 fsum3ser 11708 fsumm1 11727 fsum1p 11729 telfsumo 11777 fsumparts 11781 cvgcmpub 11787 isumsplit 11802 cvgratnnlemmn 11836 clim2prod 11850 clim2divap 11851 prodfrecap 11857 prodfdivap 11858 ntrivcvgap 11859 fproddccvg 11883 fprodm1 11909 fprodabs 11927 fprodeq0 11928 uzwodc 12358 pcaddlem 12662 fngsum 13220 igsumvalx 13221 gsumfzval 13223 gsumval2 13229 gsumfzz 13327 gsumfzconst 13677 gsumfzfsumlemm 14349 inffz 16011 |
| Copyright terms: Public domain | W3C validator |