| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9606 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | frel 5413 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
| 4 | relelfvdm 5591 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
| 5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
| 6 | 1 | fdmi 5416 | . 2 ⊢ dom ℤ≥ = ℤ |
| 7 | 5, 6 | eleqtrdi 2289 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 𝒫 cpw 3606 dom cdm 4664 Rel wrel 4669 ⟶wf 5255 ‘cfv 5259 ℤcz 9328 ℤ≥cuz 9603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7972 ax-resscn 7973 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5926 df-neg 8202 df-z 9329 df-uz 9604 |
| This theorem is referenced by: eluz2 9609 uztrn 9620 uzneg 9622 uzss 9624 uz11 9626 eluzadd 9632 uzm1 9634 uzin 9636 uzind4 9664 elfz5 10094 elfzel1 10101 eluzfz1 10108 fzsplit2 10127 fzopth 10138 fzpred 10147 fzpreddisj 10148 fzdifsuc 10158 uzsplit 10169 uzdisj 10170 elfzp12 10176 fzm1 10177 uznfz 10180 nn0disj 10215 fzolb 10231 fzoss2 10250 fzouzdisj 10258 ige2m2fzo 10276 elfzonelfzo 10308 frec2uzrand 10499 frecfzen2 10521 seq3p1 10559 seqp1cd 10564 seq3clss 10565 seq3feq2 10570 seqfveqg 10572 seq3fveq 10573 seq3shft2 10575 seqshft2g 10576 ser3mono 10581 seq3split 10582 seqsplitg 10583 seq3caopr3 10585 seqcaopr3g 10586 seq3caopr2 10587 seq3f1olemp 10609 seq3f1oleml 10610 seq3f1o 10611 seqf1oglem2a 10612 seqf1oglem1 10613 seqf1oglem2 10614 seqf1og 10615 seq3id3 10618 seq3id 10619 seq3homo 10621 seq3z 10622 seqhomog 10624 seqfeq4g 10625 seq3distr 10626 ser3ge0 10630 ser3le 10631 leexp2a 10686 hashfz 10915 hashfzo 10916 hashfzp1 10918 seq3coll 10936 rexanuz2 11158 cau4 11283 clim2ser 11504 clim2ser2 11505 climserle 11512 fsum3cvg 11545 fsum3cvg2 11561 fsumsersdc 11562 fsum3ser 11564 fsumm1 11583 fsum1p 11585 telfsumo 11633 fsumparts 11637 cvgcmpub 11643 isumsplit 11658 cvgratnnlemmn 11692 clim2prod 11706 clim2divap 11707 prodfrecap 11713 prodfdivap 11714 ntrivcvgap 11715 fproddccvg 11739 fprodm1 11765 fprodabs 11783 fprodeq0 11784 uzwodc 12214 pcaddlem 12518 fngsum 13041 igsumvalx 13042 gsumfzval 13044 gsumval2 13050 gsumfzz 13137 gsumfzconst 13481 gsumfzfsumlemm 14153 inffz 15726 |
| Copyright terms: Public domain | W3C validator |