![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9012 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | frel 5159 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ Rel ℤ≥ |
4 | relelfvdm 5330 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
5 | 3, 4 | mpan 415 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
6 | 1 | fdmi 5162 | . 2 ⊢ dom ℤ≥ = ℤ |
7 | 5, 6 | syl6eleq 2180 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 𝒫 cpw 3427 dom cdm 4436 Rel wrel 4441 ⟶wf 5006 ‘cfv 5010 ℤcz 8740 ℤ≥cuz 9009 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 ax-cnex 7426 ax-resscn 7427 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-opab 3898 df-mpt 3899 df-id 4118 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-rn 4447 df-res 4448 df-ima 4449 df-iota 4975 df-fun 5012 df-fn 5013 df-f 5014 df-fv 5018 df-ov 5647 df-neg 7646 df-z 8741 df-uz 9010 |
This theorem is referenced by: eluz2 9015 uztrn 9025 uzneg 9027 uzss 9029 uz11 9031 eluzadd 9037 uzm1 9039 uzin 9041 uzind4 9066 elfz5 9422 elfzel1 9429 eluzfz1 9435 fzsplit2 9454 fzopth 9464 fzpred 9472 fzpreddisj 9473 fzdifsuc 9483 uzsplit 9494 uzdisj 9495 elfzp12 9501 fzm1 9502 uznfz 9505 nn0disj 9537 fzolb 9552 fzoss2 9571 fzouzdisj 9579 ige2m2fzo 9597 elfzonelfzo 9629 frec2uzrand 9800 frecfzen2 9822 iseqcl 9869 iseqp1 9870 iseqp1t 9871 seq3p1 9872 seq3clss 9875 iseqfeq2 9879 seq3feq2 9881 iseqfveq 9882 seq3fveq 9883 iseqshft2 9886 seq3shft2 9887 seq3split 9895 iseqsplit 9896 iseqcaopr3 9898 seq3f1olemp 9919 seq3f1oleml 9920 seq3f1o 9921 ser3add 9923 iseqid3s 9926 iseqid 9927 iseqhomo 9930 iseqz 9931 seq3homo 9932 seq3distr 9934 ser0 9937 ser3ge0 9940 ser3le 9941 leexp2a 9996 hashfz 10217 hashfzo 10218 hashfzp1 10220 iseqcoll 10235 rexanuz2 10412 cau4 10537 clim2ser 10712 clim2ser2 10713 climserle 10721 fisumcvg 10753 fsum3cvg 10754 fisumcvg2 10773 fsum3cvg2 10774 fisumsers 10775 fisumser 10777 fsum3ser 10778 fsumm1 10797 fsum1p 10799 telfsumo 10847 fsumparts 10851 cvgcmpub 10857 isumsplit 10872 cvgratnnlemmn 10906 inffz 11800 |
Copyright terms: Public domain | W3C validator |