| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9721 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | frel 5477 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
| 4 | relelfvdm 5658 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
| 5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
| 6 | 1 | fdmi 5480 | . 2 ⊢ dom ℤ≥ = ℤ |
| 7 | 5, 6 | eleqtrdi 2322 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 𝒫 cpw 3649 dom cdm 4718 Rel wrel 4723 ⟶wf 5313 ‘cfv 5317 ℤcz 9442 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 df-uz 9719 |
| This theorem is referenced by: eluz2 9724 uztrn 9735 uzneg 9737 uzss 9739 uz11 9741 eluzadd 9747 uzm1 9749 uzin 9751 uzind4 9779 elfz5 10209 elfzel1 10216 eluzfz1 10223 fzsplit2 10242 fzopth 10253 fzpred 10262 fzpreddisj 10263 fzdifsuc 10273 uzsplit 10284 uzdisj 10285 elfzp12 10291 fzm1 10292 uznfz 10295 nn0disj 10330 fzolb 10346 fzoss2 10366 fzouzdisj 10374 fzoun 10375 ige2m2fzo 10399 elfzonelfzo 10431 frec2uzrand 10622 frecfzen2 10644 seq3p1 10682 seqp1cd 10687 seq3clss 10688 seq3feq2 10693 seqfveqg 10695 seq3fveq 10696 seq3shft2 10698 seqshft2g 10699 ser3mono 10704 seq3split 10705 seqsplitg 10706 seq3caopr3 10708 seqcaopr3g 10709 seq3caopr2 10710 seq3f1olemp 10732 seq3f1oleml 10733 seq3f1o 10734 seqf1oglem2a 10735 seqf1oglem1 10736 seqf1oglem2 10737 seqf1og 10738 seq3id3 10741 seq3id 10742 seq3homo 10744 seq3z 10745 seqhomog 10747 seqfeq4g 10748 seq3distr 10749 ser3ge0 10753 ser3le 10754 leexp2a 10809 hashfz 11038 hashfzo 11039 hashfzp1 11041 seq3coll 11059 rexanuz2 11497 cau4 11622 clim2ser 11843 clim2ser2 11844 climserle 11851 fsum3cvg 11884 fsum3cvg2 11900 fsumsersdc 11901 fsum3ser 11903 fsumm1 11922 fsum1p 11924 telfsumo 11972 fsumparts 11976 cvgcmpub 11982 isumsplit 11997 cvgratnnlemmn 12031 clim2prod 12045 clim2divap 12046 prodfrecap 12052 prodfdivap 12053 ntrivcvgap 12054 fproddccvg 12078 fprodm1 12104 fprodabs 12122 fprodeq0 12123 uzwodc 12553 pcaddlem 12857 fngsum 13416 igsumvalx 13417 gsumfzval 13419 gsumval2 13425 gsumfzz 13523 gsumfzconst 13873 gsumfzfsumlemm 14545 inffz 16399 |
| Copyright terms: Public domain | W3C validator |