Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9469 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | frel 5342 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
4 | relelfvdm 5518 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
5 | 3, 4 | mpan 421 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
6 | 1 | fdmi 5345 | . 2 ⊢ dom ℤ≥ = ℤ |
7 | 5, 6 | eleqtrdi 2259 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 𝒫 cpw 3559 dom cdm 4604 Rel wrel 4609 ⟶wf 5184 ‘cfv 5188 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-neg 8072 df-z 9192 df-uz 9467 |
This theorem is referenced by: eluz2 9472 uztrn 9482 uzneg 9484 uzss 9486 uz11 9488 eluzadd 9494 uzm1 9496 uzin 9498 uzind4 9526 elfz5 9952 elfzel1 9959 eluzfz1 9966 fzsplit2 9985 fzopth 9996 fzpred 10005 fzpreddisj 10006 fzdifsuc 10016 uzsplit 10027 uzdisj 10028 elfzp12 10034 fzm1 10035 uznfz 10038 nn0disj 10073 fzolb 10088 fzoss2 10107 fzouzdisj 10115 ige2m2fzo 10133 elfzonelfzo 10165 frec2uzrand 10340 frecfzen2 10362 seq3p1 10397 seqp1cd 10401 seq3clss 10402 seq3feq2 10405 seq3fveq 10406 seq3shft2 10408 ser3mono 10413 seq3split 10414 seq3caopr3 10416 seq3caopr2 10417 seq3f1olemp 10437 seq3f1oleml 10438 seq3f1o 10439 seq3id3 10442 seq3id 10443 seq3homo 10445 seq3z 10446 seq3distr 10448 ser3ge0 10452 ser3le 10453 leexp2a 10508 hashfz 10734 hashfzo 10735 hashfzp1 10737 seq3coll 10755 rexanuz2 10933 cau4 11058 clim2ser 11278 clim2ser2 11279 climserle 11286 fsum3cvg 11319 fsum3cvg2 11335 fsumsersdc 11336 fsum3ser 11338 fsumm1 11357 fsum1p 11359 telfsumo 11407 fsumparts 11411 cvgcmpub 11417 isumsplit 11432 cvgratnnlemmn 11466 clim2prod 11480 clim2divap 11481 prodfrecap 11487 prodfdivap 11488 ntrivcvgap 11489 fproddccvg 11513 fprodm1 11539 fprodabs 11557 fprodeq0 11558 uzwodc 11970 pcaddlem 12270 inffz 13948 |
Copyright terms: Public domain | W3C validator |