![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | β’ (π β (β€β₯βπ) β π β β€) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9530 | . . . 4 β’ β€β₯:β€βΆπ« β€ | |
2 | frel 5370 | . . . 4 β’ (β€β₯:β€βΆπ« β€ β Rel β€β₯) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ Rel β€β₯ |
4 | relelfvdm 5547 | . . 3 β’ ((Rel β€β₯ β§ π β (β€β₯βπ)) β π β dom β€β₯) | |
5 | 3, 4 | mpan 424 | . 2 β’ (π β (β€β₯βπ) β π β dom β€β₯) |
6 | 1 | fdmi 5373 | . 2 β’ dom β€β₯ = β€ |
7 | 5, 6 | eleqtrdi 2270 | 1 β’ (π β (β€β₯βπ) β π β β€) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wcel 2148 π« cpw 3575 dom cdm 4626 Rel wrel 4631 βΆwf 5212 βcfv 5216 β€cz 9252 β€β₯cuz 9527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-cnex 7901 ax-resscn 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 df-ov 5877 df-neg 8130 df-z 9253 df-uz 9528 |
This theorem is referenced by: eluz2 9533 uztrn 9543 uzneg 9545 uzss 9547 uz11 9549 eluzadd 9555 uzm1 9557 uzin 9559 uzind4 9587 elfz5 10016 elfzel1 10023 eluzfz1 10030 fzsplit2 10049 fzopth 10060 fzpred 10069 fzpreddisj 10070 fzdifsuc 10080 uzsplit 10091 uzdisj 10092 elfzp12 10098 fzm1 10099 uznfz 10102 nn0disj 10137 fzolb 10152 fzoss2 10171 fzouzdisj 10179 ige2m2fzo 10197 elfzonelfzo 10229 frec2uzrand 10404 frecfzen2 10426 seq3p1 10461 seqp1cd 10465 seq3clss 10466 seq3feq2 10469 seq3fveq 10470 seq3shft2 10472 ser3mono 10477 seq3split 10478 seq3caopr3 10480 seq3caopr2 10481 seq3f1olemp 10501 seq3f1oleml 10502 seq3f1o 10503 seq3id3 10506 seq3id 10507 seq3homo 10509 seq3z 10510 seq3distr 10512 ser3ge0 10516 ser3le 10517 leexp2a 10572 hashfz 10800 hashfzo 10801 hashfzp1 10803 seq3coll 10821 rexanuz2 10999 cau4 11124 clim2ser 11344 clim2ser2 11345 climserle 11352 fsum3cvg 11385 fsum3cvg2 11401 fsumsersdc 11402 fsum3ser 11404 fsumm1 11423 fsum1p 11425 telfsumo 11473 fsumparts 11477 cvgcmpub 11483 isumsplit 11498 cvgratnnlemmn 11532 clim2prod 11546 clim2divap 11547 prodfrecap 11553 prodfdivap 11554 ntrivcvgap 11555 fproddccvg 11579 fprodm1 11605 fprodabs 11623 fprodeq0 11624 uzwodc 12037 pcaddlem 12337 inffz 14789 |
Copyright terms: Public domain | W3C validator |