![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | β’ (π β (β€β₯βπ) β π β β€) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9533 | . . . 4 β’ β€β₯:β€βΆπ« β€ | |
2 | frel 5372 | . . . 4 β’ (β€β₯:β€βΆπ« β€ β Rel β€β₯) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ Rel β€β₯ |
4 | relelfvdm 5549 | . . 3 β’ ((Rel β€β₯ β§ π β (β€β₯βπ)) β π β dom β€β₯) | |
5 | 3, 4 | mpan 424 | . 2 β’ (π β (β€β₯βπ) β π β dom β€β₯) |
6 | 1 | fdmi 5375 | . 2 β’ dom β€β₯ = β€ |
7 | 5, 6 | eleqtrdi 2270 | 1 β’ (π β (β€β₯βπ) β π β β€) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wcel 2148 π« cpw 3577 dom cdm 4628 Rel wrel 4633 βΆwf 5214 βcfv 5218 β€cz 9255 β€β₯cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-cnex 7904 ax-resscn 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-neg 8133 df-z 9256 df-uz 9531 |
This theorem is referenced by: eluz2 9536 uztrn 9546 uzneg 9548 uzss 9550 uz11 9552 eluzadd 9558 uzm1 9560 uzin 9562 uzind4 9590 elfz5 10019 elfzel1 10026 eluzfz1 10033 fzsplit2 10052 fzopth 10063 fzpred 10072 fzpreddisj 10073 fzdifsuc 10083 uzsplit 10094 uzdisj 10095 elfzp12 10101 fzm1 10102 uznfz 10105 nn0disj 10140 fzolb 10155 fzoss2 10174 fzouzdisj 10182 ige2m2fzo 10200 elfzonelfzo 10232 frec2uzrand 10407 frecfzen2 10429 seq3p1 10464 seqp1cd 10468 seq3clss 10469 seq3feq2 10472 seq3fveq 10473 seq3shft2 10475 ser3mono 10480 seq3split 10481 seq3caopr3 10483 seq3caopr2 10484 seq3f1olemp 10504 seq3f1oleml 10505 seq3f1o 10506 seq3id3 10509 seq3id 10510 seq3homo 10512 seq3z 10513 seq3distr 10515 ser3ge0 10519 ser3le 10520 leexp2a 10575 hashfz 10803 hashfzo 10804 hashfzp1 10806 seq3coll 10824 rexanuz2 11002 cau4 11127 clim2ser 11347 clim2ser2 11348 climserle 11355 fsum3cvg 11388 fsum3cvg2 11404 fsumsersdc 11405 fsum3ser 11407 fsumm1 11426 fsum1p 11428 telfsumo 11476 fsumparts 11480 cvgcmpub 11486 isumsplit 11501 cvgratnnlemmn 11535 clim2prod 11549 clim2divap 11550 prodfrecap 11556 prodfdivap 11557 ntrivcvgap 11558 fproddccvg 11582 fprodm1 11608 fprodabs 11626 fprodeq0 11627 uzwodc 12040 pcaddlem 12340 inffz 14859 |
Copyright terms: Public domain | W3C validator |