![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9595 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | frel 5408 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
4 | relelfvdm 5586 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
6 | 1 | fdmi 5411 | . 2 ⊢ dom ℤ≥ = ℤ |
7 | 5, 6 | eleqtrdi 2286 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 𝒫 cpw 3601 dom cdm 4659 Rel wrel 4664 ⟶wf 5250 ‘cfv 5254 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-neg 8193 df-z 9318 df-uz 9593 |
This theorem is referenced by: eluz2 9598 uztrn 9609 uzneg 9611 uzss 9613 uz11 9615 eluzadd 9621 uzm1 9623 uzin 9625 uzind4 9653 elfz5 10083 elfzel1 10090 eluzfz1 10097 fzsplit2 10116 fzopth 10127 fzpred 10136 fzpreddisj 10137 fzdifsuc 10147 uzsplit 10158 uzdisj 10159 elfzp12 10165 fzm1 10166 uznfz 10169 nn0disj 10204 fzolb 10220 fzoss2 10239 fzouzdisj 10247 ige2m2fzo 10265 elfzonelfzo 10297 frec2uzrand 10476 frecfzen2 10498 seq3p1 10536 seqp1cd 10541 seq3clss 10542 seq3feq2 10547 seqfveqg 10549 seq3fveq 10550 seq3shft2 10552 seqshft2g 10553 ser3mono 10558 seq3split 10559 seqsplitg 10560 seq3caopr3 10562 seqcaopr3g 10563 seq3caopr2 10564 seq3f1olemp 10586 seq3f1oleml 10587 seq3f1o 10588 seqf1oglem2a 10589 seqf1oglem1 10590 seqf1oglem2 10591 seqf1og 10592 seq3id3 10595 seq3id 10596 seq3homo 10598 seq3z 10599 seqhomog 10601 seqfeq4g 10602 seq3distr 10603 ser3ge0 10607 ser3le 10608 leexp2a 10663 hashfz 10892 hashfzo 10893 hashfzp1 10895 seq3coll 10913 rexanuz2 11135 cau4 11260 clim2ser 11480 clim2ser2 11481 climserle 11488 fsum3cvg 11521 fsum3cvg2 11537 fsumsersdc 11538 fsum3ser 11540 fsumm1 11559 fsum1p 11561 telfsumo 11609 fsumparts 11613 cvgcmpub 11619 isumsplit 11634 cvgratnnlemmn 11668 clim2prod 11682 clim2divap 11683 prodfrecap 11689 prodfdivap 11690 ntrivcvgap 11691 fproddccvg 11715 fprodm1 11741 fprodabs 11759 fprodeq0 11760 uzwodc 12174 pcaddlem 12477 fngsum 12971 igsumvalx 12972 gsumfzval 12974 gsumval2 12980 gsumfzz 13067 gsumfzconst 13411 gsumfzfsumlemm 14075 inffz 15562 |
Copyright terms: Public domain | W3C validator |