| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9650 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | frel 5429 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
| 4 | relelfvdm 5607 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
| 5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
| 6 | 1 | fdmi 5432 | . 2 ⊢ dom ℤ≥ = ℤ |
| 7 | 5, 6 | eleqtrdi 2297 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 𝒫 cpw 3615 dom cdm 4674 Rel wrel 4679 ⟶wf 5266 ‘cfv 5270 ℤcz 9371 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-neg 8245 df-z 9372 df-uz 9648 |
| This theorem is referenced by: eluz2 9653 uztrn 9664 uzneg 9666 uzss 9668 uz11 9670 eluzadd 9676 uzm1 9678 uzin 9680 uzind4 9708 elfz5 10138 elfzel1 10145 eluzfz1 10152 fzsplit2 10171 fzopth 10182 fzpred 10191 fzpreddisj 10192 fzdifsuc 10202 uzsplit 10213 uzdisj 10214 elfzp12 10220 fzm1 10221 uznfz 10224 nn0disj 10259 fzolb 10275 fzoss2 10294 fzouzdisj 10302 ige2m2fzo 10325 elfzonelfzo 10357 frec2uzrand 10548 frecfzen2 10570 seq3p1 10608 seqp1cd 10613 seq3clss 10614 seq3feq2 10619 seqfveqg 10621 seq3fveq 10622 seq3shft2 10624 seqshft2g 10625 ser3mono 10630 seq3split 10631 seqsplitg 10632 seq3caopr3 10634 seqcaopr3g 10635 seq3caopr2 10636 seq3f1olemp 10658 seq3f1oleml 10659 seq3f1o 10660 seqf1oglem2a 10661 seqf1oglem1 10662 seqf1oglem2 10663 seqf1og 10664 seq3id3 10667 seq3id 10668 seq3homo 10670 seq3z 10671 seqhomog 10673 seqfeq4g 10674 seq3distr 10675 ser3ge0 10679 ser3le 10680 leexp2a 10735 hashfz 10964 hashfzo 10965 hashfzp1 10967 seq3coll 10985 rexanuz2 11273 cau4 11398 clim2ser 11619 clim2ser2 11620 climserle 11627 fsum3cvg 11660 fsum3cvg2 11676 fsumsersdc 11677 fsum3ser 11679 fsumm1 11698 fsum1p 11700 telfsumo 11748 fsumparts 11752 cvgcmpub 11758 isumsplit 11773 cvgratnnlemmn 11807 clim2prod 11821 clim2divap 11822 prodfrecap 11828 prodfdivap 11829 ntrivcvgap 11830 fproddccvg 11854 fprodm1 11880 fprodabs 11898 fprodeq0 11899 uzwodc 12329 pcaddlem 12633 fngsum 13191 igsumvalx 13192 gsumfzval 13194 gsumval2 13200 gsumfzz 13298 gsumfzconst 13648 gsumfzfsumlemm 14320 inffz 15973 |
| Copyright terms: Public domain | W3C validator |