![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9544 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | frel 5382 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
4 | relelfvdm 5559 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
6 | 1 | fdmi 5385 | . 2 ⊢ dom ℤ≥ = ℤ |
7 | 5, 6 | eleqtrdi 2280 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 𝒫 cpw 3587 dom cdm 4638 Rel wrel 4643 ⟶wf 5224 ‘cfv 5228 ℤcz 9266 ℤ≥cuz 9541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-cnex 7915 ax-resscn 7916 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-neg 8144 df-z 9267 df-uz 9542 |
This theorem is referenced by: eluz2 9547 uztrn 9557 uzneg 9559 uzss 9561 uz11 9563 eluzadd 9569 uzm1 9571 uzin 9573 uzind4 9601 elfz5 10030 elfzel1 10037 eluzfz1 10044 fzsplit2 10063 fzopth 10074 fzpred 10083 fzpreddisj 10084 fzdifsuc 10094 uzsplit 10105 uzdisj 10106 elfzp12 10112 fzm1 10113 uznfz 10116 nn0disj 10151 fzolb 10166 fzoss2 10185 fzouzdisj 10193 ige2m2fzo 10211 elfzonelfzo 10243 frec2uzrand 10418 frecfzen2 10440 seq3p1 10475 seqp1cd 10479 seq3clss 10480 seq3feq2 10483 seq3fveq 10484 seq3shft2 10486 ser3mono 10491 seq3split 10492 seq3caopr3 10494 seq3caopr2 10495 seq3f1olemp 10515 seq3f1oleml 10516 seq3f1o 10517 seq3id3 10520 seq3id 10521 seq3homo 10523 seq3z 10524 seq3distr 10526 ser3ge0 10530 ser3le 10531 leexp2a 10586 hashfz 10814 hashfzo 10815 hashfzp1 10817 seq3coll 10835 rexanuz2 11013 cau4 11138 clim2ser 11358 clim2ser2 11359 climserle 11366 fsum3cvg 11399 fsum3cvg2 11415 fsumsersdc 11416 fsum3ser 11418 fsumm1 11437 fsum1p 11439 telfsumo 11487 fsumparts 11491 cvgcmpub 11497 isumsplit 11512 cvgratnnlemmn 11546 clim2prod 11560 clim2divap 11561 prodfrecap 11567 prodfdivap 11568 ntrivcvgap 11569 fproddccvg 11593 fprodm1 11619 fprodabs 11637 fprodeq0 11638 uzwodc 12051 pcaddlem 12351 inffz 15092 |
Copyright terms: Public domain | W3C validator |