| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9686 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | frel 5450 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → Rel ℤ≥) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel ℤ≥ |
| 4 | relelfvdm 5631 | . . 3 ⊢ ((Rel ℤ≥ ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ dom ℤ≥) | |
| 5 | 3, 4 | mpan 424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) |
| 6 | 1 | fdmi 5453 | . 2 ⊢ dom ℤ≥ = ℤ |
| 7 | 5, 6 | eleqtrdi 2300 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 𝒫 cpw 3626 dom cdm 4693 Rel wrel 4698 ⟶wf 5286 ‘cfv 5290 ℤcz 9407 ℤ≥cuz 9683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-neg 8281 df-z 9408 df-uz 9684 |
| This theorem is referenced by: eluz2 9689 uztrn 9700 uzneg 9702 uzss 9704 uz11 9706 eluzadd 9712 uzm1 9714 uzin 9716 uzind4 9744 elfz5 10174 elfzel1 10181 eluzfz1 10188 fzsplit2 10207 fzopth 10218 fzpred 10227 fzpreddisj 10228 fzdifsuc 10238 uzsplit 10249 uzdisj 10250 elfzp12 10256 fzm1 10257 uznfz 10260 nn0disj 10295 fzolb 10311 fzoss2 10331 fzouzdisj 10339 fzoun 10340 ige2m2fzo 10364 elfzonelfzo 10396 frec2uzrand 10587 frecfzen2 10609 seq3p1 10647 seqp1cd 10652 seq3clss 10653 seq3feq2 10658 seqfveqg 10660 seq3fveq 10661 seq3shft2 10663 seqshft2g 10664 ser3mono 10669 seq3split 10670 seqsplitg 10671 seq3caopr3 10673 seqcaopr3g 10674 seq3caopr2 10675 seq3f1olemp 10697 seq3f1oleml 10698 seq3f1o 10699 seqf1oglem2a 10700 seqf1oglem1 10701 seqf1oglem2 10702 seqf1og 10703 seq3id3 10706 seq3id 10707 seq3homo 10709 seq3z 10710 seqhomog 10712 seqfeq4g 10713 seq3distr 10714 ser3ge0 10718 ser3le 10719 leexp2a 10774 hashfz 11003 hashfzo 11004 hashfzp1 11006 seq3coll 11024 rexanuz2 11417 cau4 11542 clim2ser 11763 clim2ser2 11764 climserle 11771 fsum3cvg 11804 fsum3cvg2 11820 fsumsersdc 11821 fsum3ser 11823 fsumm1 11842 fsum1p 11844 telfsumo 11892 fsumparts 11896 cvgcmpub 11902 isumsplit 11917 cvgratnnlemmn 11951 clim2prod 11965 clim2divap 11966 prodfrecap 11972 prodfdivap 11973 ntrivcvgap 11974 fproddccvg 11998 fprodm1 12024 fprodabs 12042 fprodeq0 12043 uzwodc 12473 pcaddlem 12777 fngsum 13335 igsumvalx 13336 gsumfzval 13338 gsumval2 13344 gsumfzz 13442 gsumfzconst 13792 gsumfzfsumlemm 14464 inffz 16213 |
| Copyright terms: Public domain | W3C validator |