ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssxp GIF version

Theorem fssxp 5449
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 5436 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 5208 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 14 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 5437 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 3248 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 14 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 5440 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 4786 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 411 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3204 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3167   × cxp 4677  dom cdm 4679  ran crn 4680  Rel wrel 4684  wf 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-dm 4689  df-rn 4690  df-fun 5278  df-fn 5279  df-f 5280
This theorem is referenced by:  fex2  5450  funssxp  5451  opelf  5453  fabexg  5470  dff2  5731  dff3im  5732  f2ndf  6319  f1o2ndf1  6321  tfrlemibfn  6421  tfr1onlembfn  6437  tfrcllembfn  6450  mapex  6748  uniixp  6815  ixxex  10028  pw1nct  16014
  Copyright terms: Public domain W3C validator