Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fssxp | GIF version |
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fssxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frel 5352 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
2 | relssdmrn 5131 | . . 3 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
4 | fdm 5353 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | eqimss 3201 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
7 | frn 5356 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
8 | xpss12 4718 | . . 3 ⊢ ((dom 𝐹 ⊆ 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) | |
9 | 6, 7, 8 | syl2anc 409 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) |
10 | 3, 9 | sstrd 3157 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 × cxp 4609 dom cdm 4611 ran crn 4612 Rel wrel 4616 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 |
This theorem is referenced by: fex2 5366 funssxp 5367 opelf 5369 fabexg 5385 dff2 5640 dff3im 5641 f2ndf 6205 f1o2ndf1 6207 tfrlemibfn 6307 tfr1onlembfn 6323 tfrcllembfn 6336 mapex 6632 uniixp 6699 ixxex 9856 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |