ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssxp GIF version

Theorem fssxp 5385
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 5372 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 5151 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 14 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 5373 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 3211 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 14 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 5376 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 4735 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 411 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3167 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wss 3131   × cxp 4626  dom cdm 4628  ran crn 4629  Rel wrel 4633  wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222
This theorem is referenced by:  fex2  5386  funssxp  5387  opelf  5389  fabexg  5405  dff2  5662  dff3im  5663  f2ndf  6229  f1o2ndf1  6231  tfrlemibfn  6331  tfr1onlembfn  6347  tfrcllembfn  6360  mapex  6656  uniixp  6723  ixxex  9901  pw1nct  14791
  Copyright terms: Public domain W3C validator