ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssxp GIF version

Theorem fssxp 5428
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 5415 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 5191 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 14 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 5416 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 3238 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 14 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 5419 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 4771 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 411 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3194 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157   × cxp 4662  dom cdm 4664  ran crn 4665  Rel wrel 4669  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-fun 5261  df-fn 5262  df-f 5263
This theorem is referenced by:  fex2  5429  funssxp  5430  opelf  5432  fabexg  5448  dff2  5709  dff3im  5710  f2ndf  6293  f1o2ndf1  6295  tfrlemibfn  6395  tfr1onlembfn  6411  tfrcllembfn  6424  mapex  6722  uniixp  6789  ixxex  9991  pw1nct  15734
  Copyright terms: Public domain W3C validator