![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fssxp | GIF version |
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fssxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frel 5165 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
2 | relssdmrn 4951 | . . 3 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
4 | fdm 5166 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | eqimss 3078 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
7 | frn 5169 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
8 | xpss12 4545 | . . 3 ⊢ ((dom 𝐹 ⊆ 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) | |
9 | 6, 7, 8 | syl2anc 403 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) |
10 | 3, 9 | sstrd 3035 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ⊆ wss 2999 × cxp 4436 dom cdm 4438 ran crn 4439 Rel wrel 4443 ⟶wf 5011 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-xp 4444 df-rel 4445 df-cnv 4446 df-dm 4448 df-rn 4449 df-fun 5017 df-fn 5018 df-f 5019 |
This theorem is referenced by: fex2 5179 funssxp 5180 opelf 5182 fabexg 5198 dff2 5443 dff3im 5444 f2ndf 5991 f1o2ndf1 5993 tfrlemibfn 6093 tfr1onlembfn 6109 tfrcllembfn 6122 mapex 6409 ixxex 9315 |
Copyright terms: Public domain | W3C validator |