![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > metn0 | GIF version |
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metn0 | β’ (π· β (Metβπ) β (π· β β β π β β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 13854 | . . . . 5 β’ (π· β (Metβπ) β π·:(π Γ π)βΆβ) | |
2 | frel 5371 | . . . . 5 β’ (π·:(π Γ π)βΆβ β Rel π·) | |
3 | reldm0 4846 | . . . . 5 β’ (Rel π· β (π· = β β dom π· = β )) | |
4 | 1, 2, 3 | 3syl 17 | . . . 4 β’ (π· β (Metβπ) β (π· = β β dom π· = β )) |
5 | 1 | fdmd 5373 | . . . . 5 β’ (π· β (Metβπ) β dom π· = (π Γ π)) |
6 | 5 | eqeq1d 2186 | . . . 4 β’ (π· β (Metβπ) β (dom π· = β β (π Γ π) = β )) |
7 | 4, 6 | bitrd 188 | . . 3 β’ (π· β (Metβπ) β (π· = β β (π Γ π) = β )) |
8 | sqxpeq0 5053 | . . 3 β’ ((π Γ π) = β β π = β ) | |
9 | 7, 8 | bitrdi 196 | . 2 β’ (π· β (Metβπ) β (π· = β β π = β )) |
10 | 9 | necon3bid 2388 | 1 β’ (π· β (Metβπ) β (π· β β β π β β )) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wb 105 = wceq 1353 β wcel 2148 β wne 2347 β c0 3423 Γ cxp 4625 dom cdm 4627 Rel wrel 4632 βΆwf 5213 βcfv 5217 βcr 7810 Metcmet 13444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-map 6650 df-met 13452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |