| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metn0 | GIF version | ||
| Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| metn0 | ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf 14867 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 2 | frel 5436 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → Rel 𝐷) | |
| 3 | reldm0 4901 | . . . . 5 ⊢ (Rel 𝐷 → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) | |
| 4 | 1, 2, 3 | 3syl 17 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) |
| 5 | 1 | fdmd 5438 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
| 6 | 5 | eqeq1d 2215 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (dom 𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
| 7 | 4, 6 | bitrd 188 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
| 8 | sqxpeq0 5111 | . . 3 ⊢ ((𝑋 × 𝑋) = ∅ ↔ 𝑋 = ∅) | |
| 9 | 7, 8 | bitrdi 196 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ 𝑋 = ∅)) |
| 10 | 9 | necon3bid 2418 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∅c0 3461 × cxp 4677 dom cdm 4679 Rel wrel 4684 ⟶wf 5272 ‘cfv 5276 ℝcr 7931 Metcmet 14343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-map 6744 df-met 14351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |