ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel GIF version

Theorem fnrel 5326
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5325 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 5245 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 14 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4643  Fun wfun 5222   Fn wfn 5223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5230  df-fn 5231
This theorem is referenced by:  fnbr  5330  fnresdm  5337  fn0  5347  frel  5382  fcoi2  5409  f1rel  5437  f1ocnv  5486  dffn5im  5574  fnex  5751  fnexALT  6126  basmex  12535  basmexd  12536  ismgmn0  12796  istps  13885  topontopn  13890  cldrcl  13955  neiss2  13995
  Copyright terms: Public domain W3C validator