| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnrel | GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5418 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 5335 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Rel wrel 4724 Fun wfun 5312 Fn wfn 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5320 df-fn 5321 |
| This theorem is referenced by: fnbr 5425 fnresdm 5432 fn0 5443 frel 5478 fcoi2 5509 f1rel 5537 f1ocnv 5587 dffn5im 5681 fnex 5865 fnexALT 6262 basmex 13100 basmexd 13101 ismgmn0 13399 psrelbas 14647 psradd 14651 psraddcl 14652 mplrcl 14666 mplbasss 14668 mpladd 14676 istps 14714 topontopn 14719 cldrcl 14784 neiss2 14824 |
| Copyright terms: Public domain | W3C validator |