ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel GIF version

Theorem fnrel 5106
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5105 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 5027 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 14 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4441  Fun wfun 5004   Fn wfn 5005
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-fun 5012  df-fn 5013
This theorem is referenced by:  fnbr  5110  fnresdm  5117  fn0  5127  frel  5159  fcoi2  5186  f1rel  5214  f1ocnv  5260  dffn5im  5344  fnex  5511  fnexALT  5876
  Copyright terms: Public domain W3C validator