![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnrel | GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5314 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 5234 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Rel wrel 4632 Fun wfun 5211 Fn wfn 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fun 5219 df-fn 5220 |
This theorem is referenced by: fnbr 5319 fnresdm 5326 fn0 5336 frel 5371 fcoi2 5398 f1rel 5426 f1ocnv 5475 dffn5im 5562 fnex 5739 fnexALT 6112 basmex 12521 basmexd 12522 ismgmn0 12777 istps 13535 topontopn 13540 cldrcl 13605 neiss2 13645 |
Copyright terms: Public domain | W3C validator |