| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnrel | GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5356 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 5276 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Rel wrel 4669 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: fnbr 5363 fnresdm 5370 fn0 5380 frel 5415 fcoi2 5442 f1rel 5470 f1ocnv 5520 dffn5im 5609 fnex 5787 fnexALT 6177 basmex 12764 basmexd 12765 ismgmn0 13062 psrelbas 14306 psradd 14309 psraddcl 14310 istps 14354 topontopn 14359 cldrcl 14424 neiss2 14464 |
| Copyright terms: Public domain | W3C validator |