| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnrel | GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5394 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 5311 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Rel wrel 4701 Fun wfun 5288 Fn wfn 5289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5296 df-fn 5297 |
| This theorem is referenced by: fnbr 5401 fnresdm 5408 fn0 5419 frel 5454 fcoi2 5483 f1rel 5511 f1ocnv 5561 dffn5im 5652 fnex 5834 fnexALT 6226 basmex 13058 basmexd 13059 ismgmn0 13357 psrelbas 14604 psradd 14608 psraddcl 14609 mplrcl 14623 mplbasss 14625 mpladd 14633 istps 14671 topontopn 14676 cldrcl 14741 neiss2 14781 |
| Copyright terms: Public domain | W3C validator |