![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnrel | GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5351 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 5271 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Rel wrel 4664 Fun wfun 5248 Fn wfn 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fun 5256 df-fn 5257 |
This theorem is referenced by: fnbr 5356 fnresdm 5363 fn0 5373 frel 5408 fcoi2 5435 f1rel 5463 f1ocnv 5513 dffn5im 5602 fnex 5780 fnexALT 6163 basmex 12677 basmexd 12678 ismgmn0 12941 psrelbas 14160 psradd 14163 psraddcl 14164 istps 14200 topontopn 14205 cldrcl 14270 neiss2 14310 |
Copyright terms: Public domain | W3C validator |