ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel GIF version

Theorem fnrel 5268
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5267 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 5187 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 14 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4591  Fun wfun 5164   Fn wfn 5165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-fun 5172  df-fn 5173
This theorem is referenced by:  fnbr  5272  fnresdm  5279  fn0  5289  frel  5324  fcoi2  5351  f1rel  5379  f1ocnv  5427  dffn5im  5514  fnex  5689  fnexALT  6061  istps  12441  topontopn  12446  cldrcl  12513  neiss2  12553
  Copyright terms: Public domain W3C validator