![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnrel | GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5352 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 5272 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Rel wrel 4665 Fun wfun 5249 Fn wfn 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fun 5257 df-fn 5258 |
This theorem is referenced by: fnbr 5357 fnresdm 5364 fn0 5374 frel 5409 fcoi2 5436 f1rel 5464 f1ocnv 5514 dffn5im 5603 fnex 5781 fnexALT 6165 basmex 12680 basmexd 12681 ismgmn0 12944 psrelbas 14171 psradd 14174 psraddcl 14175 istps 14211 topontopn 14216 cldrcl 14281 neiss2 14321 |
Copyright terms: Public domain | W3C validator |