Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnrel | GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5285 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 5205 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Rel wrel 4609 Fun wfun 5182 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fun 5190 df-fn 5191 |
This theorem is referenced by: fnbr 5290 fnresdm 5297 fn0 5307 frel 5342 fcoi2 5369 f1rel 5397 f1ocnv 5445 dffn5im 5532 fnex 5707 fnexALT 6079 basmex 12452 ismgmn0 12589 istps 12680 topontopn 12685 cldrcl 12752 neiss2 12792 |
Copyright terms: Public domain | W3C validator |