ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel GIF version

Theorem fnrel 5357
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5356 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 5276 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 14 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4669  Fun wfun 5253   Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5261  df-fn 5262
This theorem is referenced by:  fnbr  5363  fnresdm  5370  fn0  5380  frel  5415  fcoi2  5442  f1rel  5470  f1ocnv  5520  dffn5im  5609  fnex  5787  fnexALT  6177  basmex  12762  basmexd  12763  ismgmn0  13060  psrelbas  14304  psradd  14307  psraddcl  14308  istps  14352  topontopn  14357  cldrcl  14422  neiss2  14462
  Copyright terms: Public domain W3C validator