| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnrel | GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5356 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 5276 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Rel wrel 4669 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: fnbr 5363 fnresdm 5370 fn0 5380 frel 5415 fcoi2 5442 f1rel 5470 f1ocnv 5520 dffn5im 5609 fnex 5787 fnexALT 6177 basmex 12762 basmexd 12763 ismgmn0 13060 psrelbas 14304 psradd 14307 psraddcl 14308 istps 14352 topontopn 14357 cldrcl 14422 neiss2 14462 |
| Copyright terms: Public domain | W3C validator |