ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel GIF version

Theorem fnrel 5357
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5356 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 5276 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 14 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4669  Fun wfun 5253   Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5261  df-fn 5262
This theorem is referenced by:  fnbr  5363  fnresdm  5370  fn0  5380  frel  5415  fcoi2  5442  f1rel  5470  f1ocnv  5520  dffn5im  5609  fnex  5787  fnexALT  6177  basmex  12764  basmexd  12765  ismgmn0  13062  psrelbas  14309  psradd  14313  psraddcl  14314  mplrcl  14328  mplbasss  14330  mpladd  14338  istps  14376  topontopn  14381  cldrcl  14446  neiss2  14486
  Copyright terms: Public domain W3C validator