| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnrel | GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5376 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 5293 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Rel wrel 4684 Fun wfun 5270 Fn wfn 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5278 df-fn 5279 |
| This theorem is referenced by: fnbr 5383 fnresdm 5390 fn0 5401 frel 5436 fcoi2 5464 f1rel 5492 f1ocnv 5542 dffn5im 5631 fnex 5813 fnexALT 6203 basmex 12935 basmexd 12936 ismgmn0 13234 psrelbas 14481 psradd 14485 psraddcl 14486 mplrcl 14500 mplbasss 14502 mpladd 14510 istps 14548 topontopn 14553 cldrcl 14618 neiss2 14658 |
| Copyright terms: Public domain | W3C validator |