![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnrel | GIF version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5325 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funrel 5245 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Rel wrel 4643 Fun wfun 5222 Fn wfn 5223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fun 5230 df-fn 5231 |
This theorem is referenced by: fnbr 5330 fnresdm 5337 fn0 5347 frel 5382 fcoi2 5409 f1rel 5437 f1ocnv 5486 dffn5im 5574 fnex 5751 fnexALT 6126 basmex 12535 basmexd 12536 ismgmn0 12796 istps 13885 topontopn 13890 cldrcl 13955 neiss2 13995 |
Copyright terms: Public domain | W3C validator |