| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnrel | GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5355 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 5275 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Rel wrel 4668 Fun wfun 5252 Fn wfn 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5260 df-fn 5261 |
| This theorem is referenced by: fnbr 5360 fnresdm 5367 fn0 5377 frel 5412 fcoi2 5439 f1rel 5467 f1ocnv 5517 dffn5im 5606 fnex 5784 fnexALT 6168 basmex 12737 basmexd 12738 ismgmn0 13001 psrelbas 14228 psradd 14231 psraddcl 14232 istps 14268 topontopn 14273 cldrcl 14338 neiss2 14378 |
| Copyright terms: Public domain | W3C validator |