![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hmeocnv | GIF version |
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeocnv | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 14485 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | hmeocn 14484 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
3 | eqid 2193 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | eqid 2193 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
5 | 3, 4 | cnf 14383 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | frel 5409 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → Rel 𝐹) | |
7 | 2, 5, 6 | 3syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → Rel 𝐹) |
8 | dfrel2 5117 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
9 | 7, 8 | sylib 122 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 = 𝐹) |
10 | 9, 2 | eqeltrd 2270 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 ∈ (𝐽 Cn 𝐾)) |
11 | ishmeo 14483 | . 2 ⊢ (◡𝐹 ∈ (𝐾Homeo𝐽) ↔ (◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ ◡◡𝐹 ∈ (𝐽 Cn 𝐾))) | |
12 | 1, 10, 11 | sylanbrc 417 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∪ cuni 3836 ◡ccnv 4659 Rel wrel 4665 ⟶wf 5251 (class class class)co 5919 Cn ccn 14364 Homeochmeo 14479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-map 6706 df-top 14177 df-topon 14190 df-cn 14367 df-hmeo 14480 |
This theorem is referenced by: hmeocnvb 14497 |
Copyright terms: Public domain | W3C validator |