| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffund | GIF version | ||
| Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| ffund.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffund.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffun 5437 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5273 ⟶wf 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5282 df-f 5283 |
| This theorem is referenced by: swrdwrdsymbg 11135 ennnfonelemrnh 12857 ennnfonelemf1 12859 ctinfomlemom 12868 psrbaglesuppg 14504 psrelbasfun 14509 cncnp 14772 txcnp 14813 dvidlemap 15233 dvidrelem 15234 dvidsslem 15235 dvaddxx 15245 dvmulxx 15246 dvcjbr 15250 dvcj 15251 dvrecap 15255 plyaddlem1 15289 plymullem1 15290 plycoeid3 15299 uhgrfun 15743 |
| Copyright terms: Public domain | W3C validator |