| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffund | GIF version | ||
| Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| ffund.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffund.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffun 5475 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5311 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5320 df-f 5321 |
| This theorem is referenced by: swrdwrdsymbg 11191 ennnfonelemrnh 12982 ennnfonelemf1 12984 ctinfomlemom 12993 psrbaglesuppg 14630 psrelbasfun 14635 cncnp 14898 txcnp 14939 dvidlemap 15359 dvidrelem 15360 dvidsslem 15361 dvaddxx 15371 dvmulxx 15372 dvcjbr 15376 dvcj 15377 dvrecap 15381 plyaddlem1 15415 plymullem1 15416 plycoeid3 15425 uhgrfun 15871 |
| Copyright terms: Public domain | W3C validator |