Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffund | GIF version |
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ffund.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffund | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffund.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffun 5319 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5161 ⟶wf 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5170 df-f 5171 |
This theorem is referenced by: ennnfonelemrnh 12117 ennnfonelemf1 12119 ctinfomlemom 12128 cncnp 12590 txcnp 12631 dvidlemap 13020 dvaddxx 13027 dvmulxx 13028 dvcjbr 13032 dvcj 13033 dvrecap 13037 |
Copyright terms: Public domain | W3C validator |