ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund GIF version

Theorem ffund 5320
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffund (𝜑 → Fun 𝐹)

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2 (𝜑𝐹:𝐴𝐵)
2 ffun 5319 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5161  wf 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-fn 5170  df-f 5171
This theorem is referenced by:  ennnfonelemrnh  12117  ennnfonelemf1  12119  ctinfomlemom  12128  cncnp  12590  txcnp  12631  dvidlemap  13020  dvaddxx  13027  dvmulxx  13028  dvcjbr  13032  dvcj  13033  dvrecap  13037
  Copyright terms: Public domain W3C validator