ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund GIF version

Theorem ffund 5407
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffund (𝜑 → Fun 𝐹)

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2 (𝜑𝐹:𝐴𝐵)
2 ffun 5406 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5248  wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5257  df-f 5258
This theorem is referenced by:  ennnfonelemrnh  12573  ennnfonelemf1  12575  ctinfomlemom  12584  psrbaglesuppg  14158  psrelbasfun  14161  cncnp  14398  txcnp  14439  dvidlemap  14845  dvaddxx  14852  dvmulxx  14853  dvcjbr  14857  dvcj  14858  dvrecap  14862  plyaddlem1  14893  plymullem1  14894
  Copyright terms: Public domain W3C validator