ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund GIF version

Theorem ffund 5438
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffund (𝜑 → Fun 𝐹)

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2 (𝜑𝐹:𝐴𝐵)
2 ffun 5437 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5273  wf 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5282  df-f 5283
This theorem is referenced by:  swrdwrdsymbg  11135  ennnfonelemrnh  12857  ennnfonelemf1  12859  ctinfomlemom  12868  psrbaglesuppg  14504  psrelbasfun  14509  cncnp  14772  txcnp  14813  dvidlemap  15233  dvidrelem  15234  dvidsslem  15235  dvaddxx  15245  dvmulxx  15246  dvcjbr  15250  dvcj  15251  dvrecap  15255  plyaddlem1  15289  plymullem1  15290  plycoeid3  15299  uhgrfun  15743
  Copyright terms: Public domain W3C validator