| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffund | GIF version | ||
| Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| ffund.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffund.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffun 5413 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5253 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 df-f 5263 |
| This theorem is referenced by: ennnfonelemrnh 12658 ennnfonelemf1 12660 ctinfomlemom 12669 psrbaglesuppg 14302 psrelbasfun 14305 cncnp 14550 txcnp 14591 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvaddxx 15023 dvmulxx 15024 dvcjbr 15028 dvcj 15029 dvrecap 15033 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 |
| Copyright terms: Public domain | W3C validator |