Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffund | GIF version |
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ffund.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffund | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffund.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffun 5350 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5192 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5201 df-f 5202 |
This theorem is referenced by: ennnfonelemrnh 12371 ennnfonelemf1 12373 ctinfomlemom 12382 cncnp 13024 txcnp 13065 dvidlemap 13454 dvaddxx 13461 dvmulxx 13462 dvcjbr 13466 dvcj 13467 dvrecap 13471 |
Copyright terms: Public domain | W3C validator |