ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund GIF version

Theorem ffund 5476
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffund (𝜑 → Fun 𝐹)

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2 (𝜑𝐹:𝐴𝐵)
2 ffun 5475 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5311  wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5320  df-f 5321
This theorem is referenced by:  swrdwrdsymbg  11191  ennnfonelemrnh  12982  ennnfonelemf1  12984  ctinfomlemom  12993  psrbaglesuppg  14630  psrelbasfun  14635  cncnp  14898  txcnp  14939  dvidlemap  15359  dvidrelem  15360  dvidsslem  15361  dvaddxx  15371  dvmulxx  15372  dvcjbr  15376  dvcj  15377  dvrecap  15381  plyaddlem1  15415  plymullem1  15416  plycoeid3  15425  uhgrfun  15871
  Copyright terms: Public domain W3C validator