ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund GIF version

Theorem ffund 5414
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffund (𝜑 → Fun 𝐹)

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2 (𝜑𝐹:𝐴𝐵)
2 ffun 5413 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5253  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5262  df-f 5263
This theorem is referenced by:  ennnfonelemrnh  12658  ennnfonelemf1  12660  ctinfomlemom  12669  psrbaglesuppg  14302  psrelbasfun  14305  cncnp  14550  txcnp  14591  dvidlemap  15011  dvidrelem  15012  dvidsslem  15013  dvaddxx  15023  dvmulxx  15024  dvcjbr  15028  dvcj  15029  dvrecap  15033  plyaddlem1  15067  plymullem1  15068  plycoeid3  15077
  Copyright terms: Public domain W3C validator