| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5263 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 ran crn 4665 Fn wfn 5254 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5263 |
| This theorem is referenced by: ffnd 5411 ffun 5413 frel 5415 fdm 5416 fresin 5439 fcoi1 5441 feu 5443 f0bi 5453 fnconstg 5458 f1fn 5468 fofn 5485 dffo2 5487 fimadmfo 5492 f1ofn 5508 feqmptd 5617 fvco3 5635 ffvelcdm 5698 dff2 5709 dffo3 5712 dffo4 5713 dffo5 5714 f1ompt 5716 ffnfv 5723 fcompt 5735 fsn2 5739 fconst2g 5780 fconstfvm 5783 fex 5794 dff13 5818 cocan1 5837 off 6152 suppssof1 6157 ofco 6158 caofref 6164 caofrss 6171 caoftrn 6172 fo1stresm 6228 fo2ndresm 6229 1stcof 6230 2ndcof 6231 fo2ndf 6294 tposf2 6335 smoiso 6369 tfrcllemssrecs 6419 tfrcllemsucaccv 6421 elmapfn 6739 mapsn 6758 pw2f1odclem 6904 mapen 6916 updjudhcoinlf 7155 updjudhcoinrg 7156 updjud 7157 omp1eomlem 7169 dfz2 9417 uzn0 9636 unirnioo 10067 dfioo2 10068 ioorebasg 10069 fzen 10137 fseq1p1m1 10188 2ffzeq 10235 fvinim0ffz 10336 frecuzrdglem 10522 frecuzrdgtcl 10523 frecuzrdg0 10524 frecuzrdgfunlem 10530 frecuzrdg0t 10533 seq3val 10571 seqvalcd 10572 ser0f 10645 ffz0hash 10944 fnfzo0hash 10946 wrdred1hash 10997 shftf 11014 uzin2 11171 rexanuz 11172 prodf1f 11727 eff2 11864 reeff1 11884 tanvalap 11892 1arithlem4 12562 1arith 12563 isgrpinv 13258 kerf1ghm 13482 cnfldadd 14196 cnfldmul 14198 cnfldplusf 14208 cnfldsub 14209 znunit 14293 lmbr2 14558 cncnpi 14572 cncnp 14574 cnpdis 14586 lmff 14593 tx1cn 14613 tx2cn 14614 upxp 14616 txcnmpt 14617 uptx 14618 xmettpos 14714 blrnps 14755 blrn 14756 xmeterval 14779 qtopbasss 14865 cnbl0 14878 cnblcld 14879 cnfldms 14880 tgioo 14898 tgqioo 14899 dvfre 15054 plyreres 15108 reeff1o 15117 pilem1 15123 ioocosf1o 15198 dfrelog 15204 mpodvdsmulf1o 15334 fsumdvdsmul 15335 012of 15748 2o01f 15749 taupi 15830 |
| Copyright terms: Public domain | W3C validator |