| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5263 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 ran crn 4665 Fn wfn 5254 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5263 |
| This theorem is referenced by: ffnd 5411 ffun 5413 frel 5415 fdm 5416 fresin 5439 fcoi1 5441 feu 5443 f0bi 5453 fnconstg 5458 f1fn 5468 fofn 5485 dffo2 5487 fimadmfo 5492 f1ofn 5508 feqmptd 5617 fvco3 5635 ffvelcdm 5698 dff2 5709 dffo3 5712 dffo4 5713 dffo5 5714 f1ompt 5716 ffnfv 5723 fcompt 5735 fsn2 5739 fconst2g 5780 fconstfvm 5783 fex 5794 dff13 5818 cocan1 5837 off 6152 suppssof1 6157 ofco 6158 caofref 6164 caofrss 6171 caoftrn 6172 fo1stresm 6228 fo2ndresm 6229 1stcof 6230 2ndcof 6231 fo2ndf 6294 tposf2 6335 smoiso 6369 tfrcllemssrecs 6419 tfrcllemsucaccv 6421 elmapfn 6739 mapsn 6758 pw2f1odclem 6904 mapen 6916 updjudhcoinlf 7155 updjudhcoinrg 7156 updjud 7157 omp1eomlem 7169 dfz2 9415 uzn0 9634 unirnioo 10065 dfioo2 10066 ioorebasg 10067 fzen 10135 fseq1p1m1 10186 2ffzeq 10233 fvinim0ffz 10334 frecuzrdglem 10520 frecuzrdgtcl 10521 frecuzrdg0 10522 frecuzrdgfunlem 10528 frecuzrdg0t 10531 seq3val 10569 seqvalcd 10570 ser0f 10643 ffz0hash 10942 fnfzo0hash 10944 wrdred1hash 10995 shftf 11012 uzin2 11169 rexanuz 11170 prodf1f 11725 eff2 11862 reeff1 11882 tanvalap 11890 1arithlem4 12560 1arith 12561 isgrpinv 13256 kerf1ghm 13480 cnfldadd 14194 cnfldmul 14196 cnfldplusf 14206 cnfldsub 14207 znunit 14291 lmbr2 14534 cncnpi 14548 cncnp 14550 cnpdis 14562 lmff 14569 tx1cn 14589 tx2cn 14590 upxp 14592 txcnmpt 14593 uptx 14594 xmettpos 14690 blrnps 14731 blrn 14732 xmeterval 14755 qtopbasss 14841 cnbl0 14854 cnblcld 14855 cnfldms 14856 tgioo 14874 tgqioo 14875 dvfre 15030 plyreres 15084 reeff1o 15093 pilem1 15099 ioocosf1o 15174 dfrelog 15180 mpodvdsmulf1o 15310 fsumdvdsmul 15311 012of 15724 2o01f 15725 taupi 15804 |
| Copyright terms: Public domain | W3C validator |