| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5321 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 ran crn 4719 Fn wfn 5312 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5321 |
| This theorem is referenced by: ffnd 5473 ffun 5475 frel 5477 fdm 5478 fresin 5503 fcoi1 5505 feu 5507 f0bi 5517 fnconstg 5522 f1fn 5532 fofn 5549 dffo2 5551 fimadmfo 5556 f1ofn 5572 fdmeu 5676 feqmptd 5686 fvco3 5704 ffvelcdm 5767 dff2 5778 dffo3 5781 dffo4 5782 dffo5 5783 f1ompt 5785 ffnfv 5792 fcompt 5804 fsn2 5808 fconst2g 5853 fconstfvm 5856 fex 5867 dff13 5891 cocan1 5910 off 6229 suppssof1 6234 ofco 6235 caofref 6241 caofrss 6248 caoftrn 6249 fo1stresm 6305 fo2ndresm 6306 1stcof 6307 2ndcof 6308 fo2ndf 6371 tposf2 6412 smoiso 6446 tfrcllemssrecs 6496 tfrcllemsucaccv 6498 elmapfn 6816 mapsn 6835 pw2f1odclem 6991 mapen 7003 updjudhcoinlf 7243 updjudhcoinrg 7244 updjud 7245 omp1eomlem 7257 dfz2 9515 uzn0 9734 unirnioo 10165 dfioo2 10166 ioorebasg 10167 fzen 10235 fseq1p1m1 10286 2ffzeq 10333 fvinim0ffz 10442 frecuzrdglem 10628 frecuzrdgtcl 10629 frecuzrdg0 10630 frecuzrdgfunlem 10636 frecuzrdg0t 10639 seq3val 10677 seqvalcd 10678 ser0f 10751 ffz0hash 11050 fnfzo0hash 11052 wrdred1hash 11110 shftf 11336 uzin2 11493 rexanuz 11494 prodf1f 12049 eff2 12186 reeff1 12206 tanvalap 12214 1arithlem4 12884 1arith 12885 isgrpinv 13582 kerf1ghm 13806 cnfldadd 14520 cnfldmul 14522 cnfldplusf 14532 cnfldsub 14533 znunit 14617 lmbr2 14882 cncnpi 14896 cncnp 14898 cnpdis 14910 lmff 14917 tx1cn 14937 tx2cn 14938 upxp 14940 txcnmpt 14941 uptx 14942 xmettpos 15038 blrnps 15079 blrn 15080 xmeterval 15103 qtopbasss 15189 cnbl0 15202 cnblcld 15203 cnfldms 15204 tgioo 15222 tgqioo 15223 dvfre 15378 plyreres 15432 reeff1o 15441 pilem1 15447 ioocosf1o 15522 dfrelog 15528 mpodvdsmulf1o 15658 fsumdvdsmul 15659 012of 16316 2o01f 16317 taupi 16400 |
| Copyright terms: Public domain | W3C validator |