| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5272 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3165 ran crn 4674 Fn wfn 5263 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5272 |
| This theorem is referenced by: ffnd 5420 ffun 5422 frel 5424 fdm 5425 fresin 5448 fcoi1 5450 feu 5452 f0bi 5462 fnconstg 5467 f1fn 5477 fofn 5494 dffo2 5496 fimadmfo 5501 f1ofn 5517 feqmptd 5626 fvco3 5644 ffvelcdm 5707 dff2 5718 dffo3 5721 dffo4 5722 dffo5 5723 f1ompt 5725 ffnfv 5732 fcompt 5744 fsn2 5748 fconst2g 5789 fconstfvm 5792 fex 5803 dff13 5827 cocan1 5846 off 6161 suppssof1 6166 ofco 6167 caofref 6173 caofrss 6180 caoftrn 6181 fo1stresm 6237 fo2ndresm 6238 1stcof 6239 2ndcof 6240 fo2ndf 6303 tposf2 6344 smoiso 6378 tfrcllemssrecs 6428 tfrcllemsucaccv 6430 elmapfn 6748 mapsn 6767 pw2f1odclem 6913 mapen 6925 updjudhcoinlf 7164 updjudhcoinrg 7165 updjud 7166 omp1eomlem 7178 dfz2 9427 uzn0 9646 unirnioo 10077 dfioo2 10078 ioorebasg 10079 fzen 10147 fseq1p1m1 10198 2ffzeq 10245 fvinim0ffz 10351 frecuzrdglem 10537 frecuzrdgtcl 10538 frecuzrdg0 10539 frecuzrdgfunlem 10545 frecuzrdg0t 10548 seq3val 10586 seqvalcd 10587 ser0f 10660 ffz0hash 10959 fnfzo0hash 10961 wrdred1hash 11012 shftf 11060 uzin2 11217 rexanuz 11218 prodf1f 11773 eff2 11910 reeff1 11930 tanvalap 11938 1arithlem4 12608 1arith 12609 isgrpinv 13304 kerf1ghm 13528 cnfldadd 14242 cnfldmul 14244 cnfldplusf 14254 cnfldsub 14255 znunit 14339 lmbr2 14604 cncnpi 14618 cncnp 14620 cnpdis 14632 lmff 14639 tx1cn 14659 tx2cn 14660 upxp 14662 txcnmpt 14663 uptx 14664 xmettpos 14760 blrnps 14801 blrn 14802 xmeterval 14825 qtopbasss 14911 cnbl0 14924 cnblcld 14925 cnfldms 14926 tgioo 14944 tgqioo 14945 dvfre 15100 plyreres 15154 reeff1o 15163 pilem1 15169 ioocosf1o 15244 dfrelog 15250 mpodvdsmulf1o 15380 fsumdvdsmul 15381 012of 15794 2o01f 15795 taupi 15876 |
| Copyright terms: Public domain | W3C validator |