Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffn | GIF version |
Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
ffn | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5192 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3116 ran crn 4605 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f 5192 |
This theorem is referenced by: ffnd 5338 ffun 5340 frel 5342 fdm 5343 fresin 5366 fcoi1 5368 feu 5370 f0bi 5380 fnconstg 5385 f1fn 5395 fofn 5412 dffo2 5414 f1ofn 5433 feqmptd 5539 fvco3 5557 ffvelrn 5618 dff2 5629 dffo3 5632 dffo4 5633 dffo5 5634 f1ompt 5636 ffnfv 5643 fcompt 5655 fsn2 5659 fconst2g 5700 fconstfvm 5703 fex 5714 dff13 5736 cocan1 5755 off 6062 suppssof1 6067 ofco 6068 caofref 6071 caofrss 6074 caoftrn 6075 fo1stresm 6129 fo2ndresm 6130 1stcof 6131 2ndcof 6132 fo2ndf 6195 tposf2 6236 smoiso 6270 tfrcllemssrecs 6320 tfrcllemsucaccv 6322 elmapfn 6637 mapsn 6656 mapen 6812 updjudhcoinlf 7045 updjudhcoinrg 7046 updjud 7047 omp1eomlem 7059 dfz2 9263 uzn0 9481 unirnioo 9909 dfioo2 9910 ioorebasg 9911 fzen 9978 fseq1p1m1 10029 2ffzeq 10076 fvinim0ffz 10176 frecuzrdglem 10346 frecuzrdgtcl 10347 frecuzrdg0 10348 frecuzrdgfunlem 10354 frecuzrdg0t 10357 seq3val 10393 seqvalcd 10394 ser0f 10450 ffz0hash 10746 fnfzo0hash 10748 shftf 10772 uzin2 10929 rexanuz 10930 prodf1f 11484 eff2 11621 reeff1 11641 tanvalap 11649 1arithlem4 12296 1arith 12297 lmbr2 12854 cncnpi 12868 cncnp 12870 cnpdis 12882 lmff 12889 tx1cn 12909 tx2cn 12910 upxp 12912 txcnmpt 12913 uptx 12914 xmettpos 13010 blrnps 13051 blrn 13052 xmeterval 13075 qtopbasss 13161 cnbl0 13174 cnblcld 13175 tgioo 13186 tgqioo 13187 dvfre 13314 reeff1o 13334 pilem1 13340 ioocosf1o 13415 dfrelog 13421 012of 13875 2o01f 13876 taupi 13949 |
Copyright terms: Public domain | W3C validator |