| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ffn | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| ffn | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f 5262 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ⊆ wss 3157 ran crn 4664 Fn wfn 5253 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 df-f 5262 | 
| This theorem is referenced by: ffnd 5408 ffun 5410 frel 5412 fdm 5413 fresin 5436 fcoi1 5438 feu 5440 f0bi 5450 fnconstg 5455 f1fn 5465 fofn 5482 dffo2 5484 fimadmfo 5489 f1ofn 5505 feqmptd 5614 fvco3 5632 ffvelcdm 5695 dff2 5706 dffo3 5709 dffo4 5710 dffo5 5711 f1ompt 5713 ffnfv 5720 fcompt 5732 fsn2 5736 fconst2g 5777 fconstfvm 5780 fex 5791 dff13 5815 cocan1 5834 off 6148 suppssof1 6153 ofco 6154 caofref 6159 caofrss 6162 caoftrn 6163 fo1stresm 6219 fo2ndresm 6220 1stcof 6221 2ndcof 6222 fo2ndf 6285 tposf2 6326 smoiso 6360 tfrcllemssrecs 6410 tfrcllemsucaccv 6412 elmapfn 6730 mapsn 6749 pw2f1odclem 6895 mapen 6907 updjudhcoinlf 7146 updjudhcoinrg 7147 updjud 7148 omp1eomlem 7160 dfz2 9398 uzn0 9617 unirnioo 10048 dfioo2 10049 ioorebasg 10050 fzen 10118 fseq1p1m1 10169 2ffzeq 10216 fvinim0ffz 10317 frecuzrdglem 10503 frecuzrdgtcl 10504 frecuzrdg0 10505 frecuzrdgfunlem 10511 frecuzrdg0t 10514 seq3val 10552 seqvalcd 10553 ser0f 10626 ffz0hash 10925 fnfzo0hash 10927 wrdred1hash 10978 shftf 10995 uzin2 11152 rexanuz 11153 prodf1f 11708 eff2 11845 reeff1 11865 tanvalap 11873 1arithlem4 12535 1arith 12536 isgrpinv 13186 kerf1ghm 13404 cnfldadd 14118 cnfldmul 14120 cnfldplusf 14130 cnfldsub 14131 znunit 14215 lmbr2 14450 cncnpi 14464 cncnp 14466 cnpdis 14478 lmff 14485 tx1cn 14505 tx2cn 14506 upxp 14508 txcnmpt 14509 uptx 14510 xmettpos 14606 blrnps 14647 blrn 14648 xmeterval 14671 qtopbasss 14757 cnbl0 14770 cnblcld 14771 cnfldms 14772 tgioo 14790 tgqioo 14791 dvfre 14946 plyreres 15000 reeff1o 15009 pilem1 15015 ioocosf1o 15090 dfrelog 15096 mpodvdsmulf1o 15226 fsumdvdsmul 15227 012of 15640 2o01f 15641 taupi 15717 | 
| Copyright terms: Public domain | W3C validator |