| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5284 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3170 ran crn 4684 Fn wfn 5275 ⟶wf 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5284 |
| This theorem is referenced by: ffnd 5436 ffun 5438 frel 5440 fdm 5441 fresin 5466 fcoi1 5468 feu 5470 f0bi 5480 fnconstg 5485 f1fn 5495 fofn 5512 dffo2 5514 fimadmfo 5519 f1ofn 5535 feqmptd 5645 fvco3 5663 ffvelcdm 5726 dff2 5737 dffo3 5740 dffo4 5741 dffo5 5742 f1ompt 5744 ffnfv 5751 fcompt 5763 fsn2 5767 fconst2g 5812 fconstfvm 5815 fex 5826 dff13 5850 cocan1 5869 off 6184 suppssof1 6189 ofco 6190 caofref 6196 caofrss 6203 caoftrn 6204 fo1stresm 6260 fo2ndresm 6261 1stcof 6262 2ndcof 6263 fo2ndf 6326 tposf2 6367 smoiso 6401 tfrcllemssrecs 6451 tfrcllemsucaccv 6453 elmapfn 6771 mapsn 6790 pw2f1odclem 6946 mapen 6958 updjudhcoinlf 7197 updjudhcoinrg 7198 updjud 7199 omp1eomlem 7211 dfz2 9465 uzn0 9684 unirnioo 10115 dfioo2 10116 ioorebasg 10117 fzen 10185 fseq1p1m1 10236 2ffzeq 10283 fvinim0ffz 10392 frecuzrdglem 10578 frecuzrdgtcl 10579 frecuzrdg0 10580 frecuzrdgfunlem 10586 frecuzrdg0t 10589 seq3val 10627 seqvalcd 10628 ser0f 10701 ffz0hash 11000 fnfzo0hash 11002 wrdred1hash 11059 shftf 11216 uzin2 11373 rexanuz 11374 prodf1f 11929 eff2 12066 reeff1 12086 tanvalap 12094 1arithlem4 12764 1arith 12765 isgrpinv 13461 kerf1ghm 13685 cnfldadd 14399 cnfldmul 14401 cnfldplusf 14411 cnfldsub 14412 znunit 14496 lmbr2 14761 cncnpi 14775 cncnp 14777 cnpdis 14789 lmff 14796 tx1cn 14816 tx2cn 14817 upxp 14819 txcnmpt 14820 uptx 14821 xmettpos 14917 blrnps 14958 blrn 14959 xmeterval 14982 qtopbasss 15068 cnbl0 15081 cnblcld 15082 cnfldms 15083 tgioo 15101 tgqioo 15102 dvfre 15257 plyreres 15311 reeff1o 15320 pilem1 15326 ioocosf1o 15401 dfrelog 15407 mpodvdsmulf1o 15537 fsumdvdsmul 15538 012of 16069 2o01f 16070 taupi 16153 |
| Copyright terms: Public domain | W3C validator |