ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse GIF version

Theorem epse 4202
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4152 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 131 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32abbi2i 2214 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 2644 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2173 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 3131 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 4006 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 2446 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 4193 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 145 1 E Se 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 1448  {cab 2086  wral 2375  {crab 2379  Vcvv 2641   class class class wbr 3875   E cep 4147   Se wse 4189
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rab 2384  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-eprel 4149  df-se 4193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator