ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse GIF version

Theorem epse 4377
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4327 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 132 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32abbi2i 2311 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 2766 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2270 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 3271 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 4171 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 2552 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 4368 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 146 1 E Se 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2167  {cab 2182  wral 2475  {crab 2479  Vcvv 2763   class class class wbr 4033   E cep 4322   Se wse 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-eprel 4324  df-se 4368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator