ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse GIF version

Theorem epse 4393
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4343 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 132 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32abbi2i 2321 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 2776 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2280 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 3282 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 4186 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 2562 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 4384 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 146 1 E Se 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2177  {cab 2192  wral 2485  {crab 2489  Vcvv 2773   class class class wbr 4047   E cep 4338   Se wse 4380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-eprel 4340  df-se 4384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator