ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse GIF version

Theorem epse 4410
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4360 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 132 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32abbi2i 2324 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 2782 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2283 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 3292 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 4201 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 2565 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 4401 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 146 1 E Se 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2180  {cab 2195  wral 2488  {crab 2492  Vcvv 2779   class class class wbr 4062   E cep 4355   Se wse 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rab 2497  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-eprel 4357  df-se 4401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator