| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > epse | GIF version | ||
| Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| epse | ⊢ E Se 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 4343 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 2 | 1 | bicomi 132 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥) |
| 3 | 2 | abbi2i 2321 | . . . . 5 ⊢ 𝑥 = {𝑦 ∣ 𝑦 E 𝑥} |
| 4 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | eqeltrri 2280 | . . . 4 ⊢ {𝑦 ∣ 𝑦 E 𝑥} ∈ V |
| 6 | rabssab 3282 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ⊆ {𝑦 ∣ 𝑦 E 𝑥} | |
| 7 | 5, 6 | ssexi 4186 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 8 | 7 | rgenw 2562 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 9 | df-se 4384 | . 2 ⊢ ( E Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V) | |
| 10 | 8, 9 | mpbir 146 | 1 ⊢ E Se 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 {cab 2192 ∀wral 2485 {crab 2489 Vcvv 2773 class class class wbr 4047 E cep 4338 Se wse 4380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-eprel 4340 df-se 4384 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |