| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freq1 | GIF version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| freq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frforeq1 4397 | . . 3 ⊢ (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑆𝐴𝑠)) | |
| 2 | 1 | albidv 1848 | . 2 ⊢ (𝑅 = 𝑆 → (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠 FrFor 𝑆𝐴𝑠)) |
| 3 | df-frind 4386 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
| 4 | df-frind 4386 | . 2 ⊢ (𝑆 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑆𝐴𝑠) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 FrFor wfrfor 4381 Fr wfr 4382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-cleq 2199 df-clel 2202 df-ral 2490 df-br 4051 df-frfor 4385 df-frind 4386 |
| This theorem is referenced by: weeq1 4410 |
| Copyright terms: Public domain | W3C validator |