ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freq1 GIF version

Theorem freq1 4375
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
freq1 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))

Proof of Theorem freq1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 frforeq1 4374 . . 3 (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑆𝐴𝑠))
21albidv 1835 . 2 (𝑅 = 𝑆 → (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠 FrFor 𝑆𝐴𝑠))
3 df-frind 4363 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
4 df-frind 4363 . 2 (𝑆 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑆𝐴𝑠)
52, 3, 43bitr4g 223 1 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364   FrFor wfrfor 4358   Fr wfr 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-cleq 2186  df-clel 2189  df-ral 2477  df-br 4030  df-frfor 4362  df-frind 4363
This theorem is referenced by:  weeq1  4387
  Copyright terms: Public domain W3C validator