| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq | GIF version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 4046 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | df-br 4046 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 〈cop 3636 class class class wbr 4045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-br 4046 |
| This theorem is referenced by: breqi 4051 breqd 4056 poeq1 4347 soeq1 4363 frforeq1 4391 weeq1 4404 fveq1 5577 foeqcnvco 5861 f1eqcocnv 5862 isoeq2 5873 isoeq3 5874 ofreq 6164 supeq3 7094 tapeq1 7366 shftfvalg 11162 shftfval 11165 pw1nct 15977 |
| Copyright terms: Public domain | W3C validator |