![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsab1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfsab1 | ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbab1 2182 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
2 | 1 | nfi 1473 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 ∈ wcel 2164 {cab 2179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 |
This theorem is referenced by: abbi 2307 nfab1 2338 ralab2 2924 rexab2 2926 abn0m 3472 rabn0m 3474 eluniab 3847 elintab 3881 intexabim 4181 iinexgm 4183 opabex3d 6173 opabex3 6174 |
Copyright terms: Public domain | W3C validator |