Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsab1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfsab1 | ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbab1 2159 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
2 | 1 | nfi 1455 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1453 ∈ wcel 2141 {cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 |
This theorem is referenced by: abbi 2284 nfab1 2314 ralab2 2894 rexab2 2896 abn0m 3439 rabn0m 3441 eluniab 3806 elintab 3840 intexabim 4136 iinexgm 4138 opabex3d 6097 opabex3 6098 |
Copyright terms: Public domain | W3C validator |