Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsab1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfsab1 | ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbab1 2154 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
2 | 1 | nfi 1450 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1448 ∈ wcel 2136 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 |
This theorem is referenced by: abbi 2280 nfab1 2310 ralab2 2890 rexab2 2892 abn0m 3434 rabn0m 3436 eluniab 3801 elintab 3835 intexabim 4131 iinexgm 4133 opabex3d 6089 opabex3 6090 |
Copyright terms: Public domain | W3C validator |