ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab1 GIF version

Theorem nfsab1 2199
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfsab1
StepHypRef Expression
1 hbab1 2198 . 2 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
21nfi 1488 1 𝑥 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  wnf 1486  wcel 2180  {cab 2195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196
This theorem is referenced by:  abbi  2323  nfab1  2354  ralab2  2947  rexab2  2949  abn0m  3497  rabn0m  3499  eluniab  3879  elintab  3913  intexabim  4215  iinexgm  4217  opabex3d  6236  opabex3  6237
  Copyright terms: Public domain W3C validator