ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab1 GIF version

Theorem nfsab1 2167
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfsab1
StepHypRef Expression
1 hbab1 2166 . 2 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
21nfi 1462 1 𝑥 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  wnf 1460  wcel 2148  {cab 2163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164
This theorem is referenced by:  abbi  2291  nfab1  2321  ralab2  2901  rexab2  2903  abn0m  3448  rabn0m  3450  eluniab  3821  elintab  3855  intexabim  4152  iinexgm  4154  opabex3d  6121  opabex3  6122
  Copyright terms: Public domain W3C validator