ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2 GIF version

Theorem abeq2 2338
Description: Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbi 2343 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new set and wff variables not already in the wff. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
abeq2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abeq2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-17 1572 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
2 hbab1 2218 . . 3 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
31, 2cleqh 2329 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}))
4 abid 2217 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
54bibi2i 227 . . 3 ((𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ (𝑥𝐴𝜑))
65albii 1516 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ ∀𝑥(𝑥𝐴𝜑))
73, 6bitri 184 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393   = wceq 1395  wcel 2200  {cab 2215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225
This theorem is referenced by:  abeq1  2339  abbi2i  2344  abbi2dv  2348  clabel  2356  sbabel  2399  rabid2  2708  ru  3027  sbcabel  3111  ssalel  3212  vpwex  4262  dmopab3  4935
  Copyright terms: Public domain W3C validator