Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq2 | GIF version |
Description: Equality of a class
variable and a class abstraction (also called a
class builder). Theorem 5.1 of [Quine] p.
34. This theorem shows the
relationship between expressions with class abstractions and expressions
with class variables. Note that abbi 2280 and its relatives are among
those useful for converting theorems with class variables to equivalent
theorems with wff variables, by first substituting a class abstraction
for each class variable.
Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥 ∈ 𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥 ∣ 𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new set and wff variables not already in the wff. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abeq2 | ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | hbab1 2154 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | cleqh 2266 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
4 | abid 2153 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | 4 | bibi2i 226 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
6 | 5 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
7 | 3, 6 | bitri 183 | 1 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: abeq1 2276 abbi2i 2281 abbi2dv 2285 clabel 2293 sbabel 2335 rabid2 2642 ru 2950 sbcabel 3032 dfss2 3131 vpwex 4158 dmopab3 4817 |
Copyright terms: Public domain | W3C validator |