| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbs1 | GIF version | ||
| Description: 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 5-Aug-1993.) (Proof by Jim Kingdon, 16-Dec-2017.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hbs1 | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 1901 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | ax-ial 1548 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 3 | 1, 2 | hbxfrbi 1486 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: nfs1v 1958 sb9v 1997 eu1 2070 mopick 2123 hbab1 2185 |
| Copyright terms: Public domain | W3C validator |