| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hbeu1 | GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) | 
| Ref | Expression | 
|---|---|
| hbeu1 | ⊢ (∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2048 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | hba1 1554 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 3 | 2 | hbex 1650 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| 4 | 1, 3 | hbxfrbi 1486 | 1 ⊢ (∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∃!weu 2045 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-eu 2048 | 
| This theorem is referenced by: hbmo1 2083 eupicka 2125 exists2 2142 | 
| Copyright terms: Public domain | W3C validator |