![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eubii | GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | eubidv 2034 | . 2 ⊢ (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) |
4 | 3 | mptru 1362 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ⊤wtru 1354 ∃!weu 2026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-eu 2029 |
This theorem is referenced by: cbveu 2050 2eu7 2120 reubiia 2662 cbvreu 2703 reuv 2758 euxfr2dc 2924 euxfrdc 2925 2reuswapdc 2943 reuun2 3420 zfnuleu 4129 copsexg 4246 funeu2 5244 funcnv3 5280 fneu2 5323 tz6.12 5545 f1ompt 5669 fsn 5690 climreu 11307 divalgb 11932 txcn 13814 |
Copyright terms: Public domain | W3C validator |