| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubii | GIF version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | eubidv 2063 | . 2 ⊢ (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) |
| 4 | 3 | mptru 1382 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1374 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-eu 2058 |
| This theorem is referenced by: cbveu 2079 2eu7 2149 reubiia 2692 cbvreu 2737 reuv 2793 euxfr2dc 2962 euxfrdc 2963 2reuswapdc 2981 reuun2 3460 zfnuleu 4176 copsexg 4296 funeu2 5306 funcnv3 5345 fneu2 5390 tz6.12 5617 f1ompt 5744 fsn 5765 climreu 11683 divalgb 12311 gsum0g 13303 txcn 14822 |
| Copyright terms: Public domain | W3C validator |