ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubii GIF version

Theorem eubii 2086
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1 (𝜑𝜓)
Assertion
Ref Expression
eubii (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4 (𝜑𝜓)
21a1i 9 . . 3 (⊤ → (𝜑𝜓))
32eubidv 2085 . 2 (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓))
43mptru 1404 1 (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1396  ∃!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-eu 2080
This theorem is referenced by:  cbveu  2101  2eu7  2172  reubiia  2717  cbvreu  2763  reuv  2819  euxfr2dc  2988  euxfrdc  2989  2reuswapdc  3007  reuun2  3487  zfnuleu  4207  copsexg  4329  funeu2  5343  funcnv3  5382  fneu2  5427  tz6.12  5654  f1ompt  5785  fsn  5806  climreu  11803  divalgb  12431  gsum0g  13424  txcn  14943
  Copyright terms: Public domain W3C validator