Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eubii | GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | eubidv 2027 | . 2 ⊢ (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) |
4 | 3 | mptru 1357 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ⊤wtru 1349 ∃!weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-eu 2022 |
This theorem is referenced by: cbveu 2043 2eu7 2113 reubiia 2654 cbvreu 2694 reuv 2749 euxfr2dc 2915 euxfrdc 2916 2reuswapdc 2934 reuun2 3410 zfnuleu 4113 copsexg 4229 funeu2 5224 funcnv3 5260 fneu2 5303 tz6.12 5524 f1ompt 5647 fsn 5668 climreu 11260 divalgb 11884 txcn 13069 |
Copyright terms: Public domain | W3C validator |