![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eubii | GIF version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | eubidv 2050 | . 2 ⊢ (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) |
4 | 3 | mptru 1373 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ⊤wtru 1365 ∃!weu 2042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-eu 2045 |
This theorem is referenced by: cbveu 2066 2eu7 2136 reubiia 2679 cbvreu 2724 reuv 2779 euxfr2dc 2946 euxfrdc 2947 2reuswapdc 2965 reuun2 3443 zfnuleu 4154 copsexg 4274 funeu2 5281 funcnv3 5317 fneu2 5360 tz6.12 5583 f1ompt 5710 fsn 5731 climreu 11443 divalgb 12069 gsum0g 12982 txcn 14454 |
Copyright terms: Public domain | W3C validator |