ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubii GIF version

Theorem eubii 2062
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1 (𝜑𝜓)
Assertion
Ref Expression
eubii (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4 (𝜑𝜓)
21a1i 9 . . 3 (⊤ → (𝜑𝜓))
32eubidv 2061 . 2 (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓))
43mptru 1381 1 (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1373  ∃!weu 2053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-eu 2056
This theorem is referenced by:  cbveu  2077  2eu7  2147  reubiia  2690  cbvreu  2735  reuv  2790  euxfr2dc  2957  euxfrdc  2958  2reuswapdc  2976  reuun2  3455  zfnuleu  4167  copsexg  4287  funeu2  5296  funcnv3  5335  fneu2  5380  tz6.12  5603  f1ompt  5730  fsn  5751  climreu  11550  divalgb  12178  gsum0g  13170  txcn  14689
  Copyright terms: Public domain W3C validator