ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubii GIF version

Theorem eubii 2028
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1 (𝜑𝜓)
Assertion
Ref Expression
eubii (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4 (𝜑𝜓)
21a1i 9 . . 3 (⊤ → (𝜑𝜓))
32eubidv 2027 . 2 (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓))
43mptru 1357 1 (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  wtru 1349  ∃!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-eu 2022
This theorem is referenced by:  cbveu  2043  2eu7  2113  reubiia  2654  cbvreu  2694  reuv  2749  euxfr2dc  2915  euxfrdc  2916  2reuswapdc  2934  reuun2  3410  zfnuleu  4113  copsexg  4229  funeu2  5224  funcnv3  5260  fneu2  5303  tz6.12  5524  f1ompt  5647  fsn  5668  climreu  11260  divalgb  11884  txcn  13069
  Copyright terms: Public domain W3C validator