ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubii GIF version

Theorem eubii 2064
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1 (𝜑𝜓)
Assertion
Ref Expression
eubii (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4 (𝜑𝜓)
21a1i 9 . . 3 (⊤ → (𝜑𝜓))
32eubidv 2063 . 2 (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓))
43mptru 1382 1 (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1374  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-eu 2058
This theorem is referenced by:  cbveu  2079  2eu7  2149  reubiia  2692  cbvreu  2737  reuv  2793  euxfr2dc  2962  euxfrdc  2963  2reuswapdc  2981  reuun2  3460  zfnuleu  4176  copsexg  4296  funeu2  5306  funcnv3  5345  fneu2  5390  tz6.12  5617  f1ompt  5744  fsn  5765  climreu  11683  divalgb  12311  gsum0g  13303  txcn  14822
  Copyright terms: Public domain W3C validator