| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubii | GIF version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | eubidv 2085 | . 2 ⊢ (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) |
| 4 | 3 | mptru 1404 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1396 ∃!weu 2077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-eu 2080 |
| This theorem is referenced by: cbveu 2101 2eu7 2172 reubiia 2717 cbvreu 2763 reuv 2819 euxfr2dc 2988 euxfrdc 2989 2reuswapdc 3007 reuun2 3487 zfnuleu 4207 copsexg 4329 funeu2 5343 funcnv3 5382 fneu2 5427 tz6.12 5654 f1ompt 5785 fsn 5806 climreu 11803 divalgb 12431 gsum0g 13424 txcn 14943 |
| Copyright terms: Public domain | W3C validator |