Step | Hyp | Ref
| Expression |
1 | | metcn.2 |
. . 3
⊢ 𝐽 = (MetOpen‘𝐶) |
2 | | metcn.4 |
. . 3
⊢ 𝐾 = (MetOpen‘𝐷) |
3 | 1, 2 | metcnpi2 13166 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑧 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴)) |
4 | | rphalfcl 9617 |
. . . 4
⊢ (𝑧 ∈ ℝ+
→ (𝑧 / 2) ∈
ℝ+) |
5 | 4 | ad2antrl 482 |
. . 3
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ ∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴))) → (𝑧 / 2) ∈
ℝ+) |
6 | | simplll 523 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐶 ∈ (∞Met‘𝑋)) |
7 | | simprr 522 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
8 | 1 | mopntopon 13093 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
9 | 6, 8 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
10 | | simpllr 524 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐷 ∈ (∞Met‘𝑌)) |
11 | 2 | mopntopon 13093 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
12 | 10, 11 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐾 ∈ (TopOn‘𝑌)) |
13 | | topontop 12662 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
14 | 12, 13 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐾 ∈ Top) |
15 | | simplrl 525 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
16 | | cnprcl2k 12856 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |
17 | 9, 14, 15, 16 | syl3anc 1228 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝑃 ∈ 𝑋) |
18 | | xmetcl 13002 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑦𝐶𝑃) ∈
ℝ*) |
19 | 6, 7, 17, 18 | syl3anc 1228 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝑦𝐶𝑃) ∈
ℝ*) |
20 | 4 | ad2antrl 482 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝑧 / 2) ∈
ℝ+) |
21 | 20 | rpxrd 9633 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝑧 / 2) ∈
ℝ*) |
22 | | rpxr 9597 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ∈
ℝ*) |
23 | 22 | ad2antrl 482 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝑧 ∈ ℝ*) |
24 | | rphalflt 9619 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ+
→ (𝑧 / 2) < 𝑧) |
25 | 24 | ad2antrl 482 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝑧 / 2) < 𝑧) |
26 | | xrlelttr 9742 |
. . . . . . . . . 10
⊢ (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*
∧ 𝑧 ∈
ℝ*) → (((𝑦𝐶𝑃) ≤ (𝑧 / 2) ∧ (𝑧 / 2) < 𝑧) → (𝑦𝐶𝑃) < 𝑧)) |
27 | 26 | expcomd 1429 |
. . . . . . . . 9
⊢ (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*
∧ 𝑧 ∈
ℝ*) → ((𝑧 / 2) < 𝑧 → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧))) |
28 | 27 | imp 123 |
. . . . . . . 8
⊢ ((((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*
∧ 𝑧 ∈
ℝ*) ∧ (𝑧 / 2) < 𝑧) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧)) |
29 | 19, 21, 23, 25, 28 | syl31anc 1231 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧)) |
30 | | cnpf2 12857 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
31 | 9, 12, 15, 30 | syl3anc 1228 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐹:𝑋⟶𝑌) |
32 | 31, 7 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝐹‘𝑦) ∈ 𝑌) |
33 | 31, 17 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (𝐹‘𝑃) ∈ 𝑌) |
34 | | xmetcl 13002 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑦) ∈ 𝑌 ∧ (𝐹‘𝑃) ∈ 𝑌) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ∈
ℝ*) |
35 | 10, 32, 33, 34 | syl3anc 1228 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ∈
ℝ*) |
36 | | simplrr 526 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈
ℝ+) |
37 | 36 | rpxrd 9633 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈
ℝ*) |
38 | | xrltle 9734 |
. . . . . . . 8
⊢ ((((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
→ (((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |
39 | 35, 37, 38 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |
40 | 29, 39 | imim12d 74 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ 𝑦 ∈ 𝑋)) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴))) |
41 | 40 | anassrs 398 |
. . . . 5
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌)) ∧
(𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+)
∧ 𝑦 ∈ 𝑋) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴))) |
42 | 41 | ralimdva 2533 |
. . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+)
→ (∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴) → ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴))) |
43 | 42 | impr 377 |
. . 3
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ ∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴))) → ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |
44 | | breq2 3986 |
. . . 4
⊢ (𝑥 = (𝑧 / 2) → ((𝑦𝐶𝑃) ≤ 𝑥 ↔ (𝑦𝐶𝑃) ≤ (𝑧 / 2))) |
45 | 44 | rspceaimv 2838 |
. . 3
⊢ (((𝑧 / 2) ∈ ℝ+
∧ ∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |
46 | 5, 43, 45 | syl2anc 409 |
. 2
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+
∧ ∀𝑦 ∈
𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴))) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |
47 | 3, 46 | rexlimddv 2588 |
1
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |