ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcimdv GIF version

Theorem rspcimdv 2854
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1 (𝜑𝐴𝐵)
rspcimdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcimdv (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcimdv
StepHypRef Expression
1 df-ral 2470 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
2 rspcimdv.1 . . 3 (𝜑𝐴𝐵)
3 simpr 110 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
43eleq1d 2256 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑥𝐵𝐴𝐵))
54biimprd 158 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝐴𝐵𝑥𝐵))
6 rspcimdv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
75, 6imim12d 74 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
82, 7spcimdv 2833 . . 3 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
92, 8mpid 42 . 2 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → 𝜒))
101, 9biimtrid 152 1 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1361   = wceq 1363  wcel 2158  wral 2465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751
This theorem is referenced by:  rspcdv  2856
  Copyright terms: Public domain W3C validator