ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimcim GIF version

Theorem cnplimcim 15341
Description: If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
cnplimcim.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimcim.j 𝐽 = (𝐾t 𝐴)
Assertion
Ref Expression
cnplimcim ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))

Proof of Theorem cnplimcim
Dummy variables 𝑑 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimcim.j . . . . . 6 𝐽 = (𝐾t 𝐴)
2 cnplimcim.k . . . . . . . 8 𝐾 = (MetOpen‘(abs ∘ − ))
32cntoptopon 15206 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
4 simpl 109 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐴 ⊆ ℂ)
5 resttopon 14845 . . . . . . 7 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
63, 4, 5sylancr 414 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
71, 6eqeltrid 2316 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝐴))
8 cnpf2 14881 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
983expia 1229 . . . . 5 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
107, 3, 9sylancl 413 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
1110imp 124 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
12 simplr 528 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵𝐴)
1311, 12ffvelcdmd 5771 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹𝐵) ∈ ℂ)
14 simpr 110 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
15 simpll 527 . . . . . . . . . 10 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ)
16 cnxmet 15205 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
17 eqid 2229 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
18 eqid 2229 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
1917, 2, 18metrest 15180 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
2016, 19mpan 424 . . . . . . . . . . 11 (𝐴 ⊆ ℂ → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
211, 20eqtrid 2274 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
2215, 21syl 14 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
232a1i 9 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐾 = (MetOpen‘(abs ∘ − )))
24 xmetres2 15053 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
2516, 15, 24sylancr 414 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
2616a1i 9 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ))
27 simplr 528 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵𝐴)
2822, 23, 25, 26, 27metcnpd 15194 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))))
2911, 28syldan 282 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))))
3014, 29mpbid 147 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒)))
3130simprd 114 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))
3212ad3antrrr 492 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐵𝐴)
33 simpr 110 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧𝐴)
3432, 33ovresd 6146 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) = (𝐵(abs ∘ − )𝑧))
3515, 27sseldd 3225 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ)
3611, 35syldan 282 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ ℂ)
3736ad3antrrr 492 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐵 ∈ ℂ)
38 simpll 527 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐴 ⊆ ℂ)
3938ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐴 ⊆ ℂ)
4039, 33sseldd 3225 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧 ∈ ℂ)
41 eqid 2229 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
4241cnmetdval 15203 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
4337, 40, 42syl2anc 411 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
4437, 40abssubd 11704 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘(𝐵𝑧)) = (abs‘(𝑧𝐵)))
4534, 43, 443eqtrd 2266 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) = (abs‘(𝑧𝐵)))
4645breq1d 4093 . . . . . . . . . . 11 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 ↔ (abs‘(𝑧𝐵)) < 𝑑))
4746biimprd 158 . . . . . . . . . 10 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((abs‘(𝑧𝐵)) < 𝑑 → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑))
4847adantld 278 . . . . . . . . 9 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑))
4913ad3antrrr 492 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝐵) ∈ ℂ)
5011ad3antrrr 492 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐹:𝐴⟶ℂ)
5150, 33ffvelcdmd 5771 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
5241cnmetdval 15203 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝐵) − (𝐹𝑧))))
5349, 51, 52syl2anc 411 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝐵) − (𝐹𝑧))))
5449, 51abssubd 11704 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐹𝐵) − (𝐹𝑧))) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
5553, 54eqtrd 2262 . . . . . . . . . . 11 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
5655breq1d 4093 . . . . . . . . . 10 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒 ↔ (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
5756biimpd 144 . . . . . . . . 9 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
5848, 57imim12d 74 . . . . . . . 8 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
5958ralimdva 2597 . . . . . . 7 (((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6059reximdva 2632 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6160ralimdva 2597 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6231, 61mpd 13 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
6311, 38, 36ellimc3ap 15335 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ ((𝐹𝐵) ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))))
6413, 62, 63mpbir2and 950 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
6511, 64jca 306 . 2 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
6665ex 115 1 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197   class class class wbr 4083   × cxp 4717  cres 4721  ccom 4723  wf 5314  cfv 5318  (class class class)co 6001  cc 7997   < clt 8181  cmin 8317   # cap 8728  +crp 9849  abscabs 11508  t crest 13272  ∞Metcxmet 14500  MetOpencmopn 14505  TopOnctopon 14684   CnP ccnp 14860   lim climc 15328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-pm 6798  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-cnp 14863  df-limced 15330
This theorem is referenced by:  cnplimccntop  15344  cnlimcim  15345
  Copyright terms: Public domain W3C validator