ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimcim GIF version

Theorem cnplimcim 13276
Description: If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
cnplimcim.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimcim.j 𝐽 = (𝐾t 𝐴)
Assertion
Ref Expression
cnplimcim ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))

Proof of Theorem cnplimcim
Dummy variables 𝑑 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimcim.j . . . . . 6 𝐽 = (𝐾t 𝐴)
2 cnplimcim.k . . . . . . . 8 𝐾 = (MetOpen‘(abs ∘ − ))
32cntoptopon 13172 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
4 simpl 108 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐴 ⊆ ℂ)
5 resttopon 12811 . . . . . . 7 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
63, 4, 5sylancr 411 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
71, 6eqeltrid 2253 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝐴))
8 cnpf2 12847 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
983expia 1195 . . . . 5 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
107, 3, 9sylancl 410 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
1110imp 123 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
12 simplr 520 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵𝐴)
1311, 12ffvelrnd 5621 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹𝐵) ∈ ℂ)
14 simpr 109 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
15 simpll 519 . . . . . . . . . 10 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ)
16 cnxmet 13171 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
17 eqid 2165 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
18 eqid 2165 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
1917, 2, 18metrest 13146 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
2016, 19mpan 421 . . . . . . . . . . 11 (𝐴 ⊆ ℂ → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
211, 20syl5eq 2211 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
2215, 21syl 14 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
232a1i 9 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐾 = (MetOpen‘(abs ∘ − )))
24 xmetres2 13019 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
2516, 15, 24sylancr 411 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
2616a1i 9 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ))
27 simplr 520 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵𝐴)
2822, 23, 25, 26, 27metcnpd 13160 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))))
2911, 28syldan 280 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))))
3014, 29mpbid 146 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒)))
3130simprd 113 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))
3212ad3antrrr 484 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐵𝐴)
33 simpr 109 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧𝐴)
3432, 33ovresd 5982 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) = (𝐵(abs ∘ − )𝑧))
3515, 27sseldd 3143 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ)
3611, 35syldan 280 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ ℂ)
3736ad3antrrr 484 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐵 ∈ ℂ)
38 simpll 519 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐴 ⊆ ℂ)
3938ad3antrrr 484 . . . . . . . . . . . . . . 15 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐴 ⊆ ℂ)
4039, 33sseldd 3143 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧 ∈ ℂ)
41 eqid 2165 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
4241cnmetdval 13169 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
4337, 40, 42syl2anc 409 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
4437, 40abssubd 11135 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘(𝐵𝑧)) = (abs‘(𝑧𝐵)))
4534, 43, 443eqtrd 2202 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) = (abs‘(𝑧𝐵)))
4645breq1d 3992 . . . . . . . . . . 11 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 ↔ (abs‘(𝑧𝐵)) < 𝑑))
4746biimprd 157 . . . . . . . . . 10 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((abs‘(𝑧𝐵)) < 𝑑 → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑))
4847adantld 276 . . . . . . . . 9 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑))
4913ad3antrrr 484 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝐵) ∈ ℂ)
5011ad3antrrr 484 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐹:𝐴⟶ℂ)
5150, 33ffvelrnd 5621 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
5241cnmetdval 13169 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝐵) − (𝐹𝑧))))
5349, 51, 52syl2anc 409 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝐵) − (𝐹𝑧))))
5449, 51abssubd 11135 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐹𝐵) − (𝐹𝑧))) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
5553, 54eqtrd 2198 . . . . . . . . . . 11 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
5655breq1d 3992 . . . . . . . . . 10 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒 ↔ (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
5756biimpd 143 . . . . . . . . 9 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
5848, 57imim12d 74 . . . . . . . 8 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
5958ralimdva 2533 . . . . . . 7 (((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6059reximdva 2568 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6160ralimdva 2533 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6231, 61mpd 13 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
6311, 38, 36ellimc3ap 13270 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ ((𝐹𝐵) ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))))
6413, 62, 63mpbir2and 934 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
6511, 64jca 304 . 2 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
6665ex 114 1 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wrex 2445  wss 3116   class class class wbr 3982   × cxp 4602  cres 4606  ccom 4608  wf 5184  cfv 5188  (class class class)co 5842  cc 7751   < clt 7933  cmin 8069   # cap 8479  +crp 9589  abscabs 10939  t crest 12556  ∞Metcxmet 12620  MetOpencmopn 12625  TopOnctopon 12648   CnP ccnp 12826   lim climc 13263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pm 6617  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-cnp 12829  df-limced 13265
This theorem is referenced by:  cnplimccntop  13279  cnlimcim  13280
  Copyright terms: Public domain W3C validator