ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcncntoplem GIF version

Theorem addcncntoplem 14881
Description: Lemma for addcncntop 14882, subcncntop 14883, and mulcncntop 14884. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
addcn.2 + :(ℂ × ℂ)⟶ℂ
addcn.3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
Assertion
Ref Expression
addcncntoplem + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧,𝐽   + ,𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧

Proof of Theorem addcncntoplem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcn.2 . 2 + :(ℂ × ℂ)⟶ℂ
2 addcn.3 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
323coml 1212 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4 rpmincl 11420 . . . . . . 7 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+)
54adantl 277 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+)
6 simpll1 1038 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑏 ∈ ℂ)
7 simprl 529 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
8 eqid 2196 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
98cnmetdval 14849 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑏𝑢)))
10 abssub 11283 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (abs‘(𝑏𝑢)) = (abs‘(𝑢𝑏)))
119, 10eqtrd 2229 . . . . . . . . . . . . 13 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
126, 7, 11syl2anc 411 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
1312breq1d 4044 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ↔ (abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < )))
147, 6subcld 8354 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝑏) ∈ ℂ)
1514abscld 11363 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝑏)) ∈ ℝ)
16 simplrl 535 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ+)
1716rpred 9788 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ)
18 simplrr 536 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ+)
1918rpred 9788 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ)
20 ltmininf 11417 . . . . . . . . . . . 12 (((abs‘(𝑢𝑏)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2115, 17, 19, 20syl3anc 1249 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2213, 21bitrd 188 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
23 simpl 109 . . . . . . . . . 10 (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧) → (abs‘(𝑢𝑏)) < 𝑦)
2422, 23biimtrdi 163 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) → (abs‘(𝑢𝑏)) < 𝑦))
25 simpll2 1039 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑐 ∈ ℂ)
26 simprr 531 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
278cnmetdval 14849 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑐𝑣)))
28 abssub 11283 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (abs‘(𝑐𝑣)) = (abs‘(𝑣𝑐)))
2927, 28eqtrd 2229 . . . . . . . . . . . . 13 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3025, 26, 29syl2anc 411 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3130breq1d 4044 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) ↔ (abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < )))
3226, 25subcld 8354 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝑐) ∈ ℂ)
3332abscld 11363 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝑐)) ∈ ℝ)
34 ltmininf 11417 . . . . . . . . . . . 12 (((abs‘(𝑣𝑐)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3533, 17, 19, 34syl3anc 1249 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3631, 35bitrd 188 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
37 simpr 110 . . . . . . . . . 10 (((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘(𝑣𝑐)) < 𝑧)
3836, 37biimtrdi 163 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) → (abs‘(𝑣𝑐)) < 𝑧))
3924, 38anim12d 335 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
401fovcl 6032 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
416, 25, 40syl2anc 411 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏 + 𝑐) ∈ ℂ)
421fovcl 6032 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
4342adantl 277 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
448cnmetdval 14849 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))))
45 abssub 11283 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4644, 45eqtrd 2229 . . . . . . . . . . 11 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4741, 43, 46syl2anc 411 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4847breq1d 4044 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎 ↔ (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4948biimprd 158 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎 → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
5039, 49imim12d 74 . . . . . . 7 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5150ralimdvva 2566 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
52 breq2 4038 . . . . . . . . . 10 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((𝑏(abs ∘ − )𝑢) < 𝑥 ↔ (𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < )))
53 breq2 4038 . . . . . . . . . 10 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((𝑐(abs ∘ − )𝑣) < 𝑥 ↔ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )))
5452, 53anbi12d 473 . . . . . . . . 9 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) ↔ ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ))))
5554imbi1d 231 . . . . . . . 8 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
56552ralbidv 2521 . . . . . . 7 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5756rspcev 2868 . . . . . 6 ((inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
585, 51, 57syl6an 1445 . . . . 5 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5958rexlimdvva 2622 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
603, 59mpd 13 . . 3 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
6160rgen3 2584 . 2 𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)
62 cnxmet 14851 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 addcncntop.j . . . 4 𝐽 = (MetOpen‘(abs ∘ − ))
6463, 63, 63txmetcn 14839 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))))
6562, 62, 62, 64mp3an 1348 . 2 ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
661, 61, 65mpbir2an 944 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {cpr 3624   class class class wbr 4034   × cxp 4662  ccom 4668  wf 5255  cfv 5259  (class class class)co 5925  infcinf 7058  cc 7894  cr 7895   < clt 8078  cmin 8214  +crp 9745  abscabs 11179  ∞Metcxmet 14168  MetOpencmopn 14173   Cn ccn 14505   ×t ctx 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508  df-cnp 14509  df-tx 14573
This theorem is referenced by:  addcncntop  14882  subcncntop  14883  mulcncntop  14884  mpomulcn  14886
  Copyright terms: Public domain W3C validator