ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcncntoplem GIF version

Theorem addcncntoplem 13191
Description: Lemma for addcncntop 13192, subcncntop 13193, and mulcncntop 13194. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
addcn.2 + :(ℂ × ℂ)⟶ℂ
addcn.3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
Assertion
Ref Expression
addcncntoplem + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧,𝐽   + ,𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧

Proof of Theorem addcncntoplem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcn.2 . 2 + :(ℂ × ℂ)⟶ℂ
2 addcn.3 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
323coml 1200 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4 rpmincl 11179 . . . . . . 7 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+)
54adantl 275 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+)
6 simpll1 1026 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑏 ∈ ℂ)
7 simprl 521 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
8 eqid 2165 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
98cnmetdval 13169 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑏𝑢)))
10 abssub 11043 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (abs‘(𝑏𝑢)) = (abs‘(𝑢𝑏)))
119, 10eqtrd 2198 . . . . . . . . . . . . 13 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
126, 7, 11syl2anc 409 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
1312breq1d 3992 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ↔ (abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < )))
147, 6subcld 8209 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝑏) ∈ ℂ)
1514abscld 11123 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝑏)) ∈ ℝ)
16 simplrl 525 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ+)
1716rpred 9632 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ)
18 simplrr 526 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ+)
1918rpred 9632 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ)
20 ltmininf 11176 . . . . . . . . . . . 12 (((abs‘(𝑢𝑏)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2115, 17, 19, 20syl3anc 1228 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2213, 21bitrd 187 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
23 simpl 108 . . . . . . . . . 10 (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧) → (abs‘(𝑢𝑏)) < 𝑦)
2422, 23syl6bi 162 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) → (abs‘(𝑢𝑏)) < 𝑦))
25 simpll2 1027 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑐 ∈ ℂ)
26 simprr 522 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
278cnmetdval 13169 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑐𝑣)))
28 abssub 11043 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (abs‘(𝑐𝑣)) = (abs‘(𝑣𝑐)))
2927, 28eqtrd 2198 . . . . . . . . . . . . 13 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3025, 26, 29syl2anc 409 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3130breq1d 3992 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) ↔ (abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < )))
3226, 25subcld 8209 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝑐) ∈ ℂ)
3332abscld 11123 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝑐)) ∈ ℝ)
34 ltmininf 11176 . . . . . . . . . . . 12 (((abs‘(𝑣𝑐)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3533, 17, 19, 34syl3anc 1228 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3631, 35bitrd 187 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
37 simpr 109 . . . . . . . . . 10 (((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘(𝑣𝑐)) < 𝑧)
3836, 37syl6bi 162 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) → (abs‘(𝑣𝑐)) < 𝑧))
3924, 38anim12d 333 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
401fovcl 5947 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
416, 25, 40syl2anc 409 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏 + 𝑐) ∈ ℂ)
421fovcl 5947 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
4342adantl 275 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
448cnmetdval 13169 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))))
45 abssub 11043 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4644, 45eqtrd 2198 . . . . . . . . . . 11 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4741, 43, 46syl2anc 409 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4847breq1d 3992 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎 ↔ (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4948biimprd 157 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎 → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
5039, 49imim12d 74 . . . . . . 7 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5150ralimdvva 2535 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
52 breq2 3986 . . . . . . . . . 10 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((𝑏(abs ∘ − )𝑢) < 𝑥 ↔ (𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < )))
53 breq2 3986 . . . . . . . . . 10 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((𝑐(abs ∘ − )𝑣) < 𝑥 ↔ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )))
5452, 53anbi12d 465 . . . . . . . . 9 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) ↔ ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ))))
5554imbi1d 230 . . . . . . . 8 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
56552ralbidv 2490 . . . . . . 7 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5756rspcev 2830 . . . . . 6 ((inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
585, 51, 57syl6an 1422 . . . . 5 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5958rexlimdvva 2591 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
603, 59mpd 13 . . 3 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
6160rgen3 2553 . 2 𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)
62 cnxmet 13171 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 addcncntop.j . . . 4 𝐽 = (MetOpen‘(abs ∘ − ))
6463, 63, 63txmetcn 13159 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))))
6562, 62, 62, 64mp3an 1327 . 2 ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
661, 61, 65mpbir2an 932 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {cpr 3577   class class class wbr 3982   × cxp 4602  ccom 4608  wf 5184  cfv 5188  (class class class)co 5842  infcinf 6948  cc 7751  cr 7752   < clt 7933  cmin 8069  +crp 9589  abscabs 10939  ∞Metcxmet 12620  MetOpencmopn 12625   Cn ccn 12825   ×t ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-cnp 12829  df-tx 12893
This theorem is referenced by:  addcncntop  13192  subcncntop  13193  mulcncntop  13194
  Copyright terms: Public domain W3C validator