ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcncntoplem GIF version

Theorem addcncntoplem 14212
Description: Lemma for addcncntop 14213, subcncntop 14214, and mulcncntop 14215. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
addcn.2 + :(ℂ × ℂ)⟶ℂ
addcn.3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
Assertion
Ref Expression
addcncntoplem + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧,𝐽   + ,𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧

Proof of Theorem addcncntoplem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcn.2 . 2 + :(ℂ × ℂ)⟶ℂ
2 addcn.3 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
323coml 1210 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4 rpmincl 11249 . . . . . . 7 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+)
54adantl 277 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+)
6 simpll1 1036 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑏 ∈ ℂ)
7 simprl 529 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
8 eqid 2177 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
98cnmetdval 14190 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑏𝑢)))
10 abssub 11113 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (abs‘(𝑏𝑢)) = (abs‘(𝑢𝑏)))
119, 10eqtrd 2210 . . . . . . . . . . . . 13 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
126, 7, 11syl2anc 411 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
1312breq1d 4015 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ↔ (abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < )))
147, 6subcld 8271 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝑏) ∈ ℂ)
1514abscld 11193 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝑏)) ∈ ℝ)
16 simplrl 535 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ+)
1716rpred 9699 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ)
18 simplrr 536 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ+)
1918rpred 9699 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ)
20 ltmininf 11246 . . . . . . . . . . . 12 (((abs‘(𝑢𝑏)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2115, 17, 19, 20syl3anc 1238 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝑏)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2213, 21bitrd 188 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
23 simpl 109 . . . . . . . . . 10 (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧) → (abs‘(𝑢𝑏)) < 𝑦)
2422, 23biimtrdi 163 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) → (abs‘(𝑢𝑏)) < 𝑦))
25 simpll2 1037 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑐 ∈ ℂ)
26 simprr 531 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
278cnmetdval 14190 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑐𝑣)))
28 abssub 11113 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (abs‘(𝑐𝑣)) = (abs‘(𝑣𝑐)))
2927, 28eqtrd 2210 . . . . . . . . . . . . 13 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3025, 26, 29syl2anc 411 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3130breq1d 4015 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) ↔ (abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < )))
3226, 25subcld 8271 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝑐) ∈ ℂ)
3332abscld 11193 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝑐)) ∈ ℝ)
34 ltmininf 11246 . . . . . . . . . . . 12 (((abs‘(𝑣𝑐)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3533, 17, 19, 34syl3anc 1238 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝑐)) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3631, 35bitrd 188 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
37 simpr 110 . . . . . . . . . 10 (((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘(𝑣𝑐)) < 𝑧)
3836, 37biimtrdi 163 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ) → (abs‘(𝑣𝑐)) < 𝑧))
3924, 38anim12d 335 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
401fovcl 5983 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
416, 25, 40syl2anc 411 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏 + 𝑐) ∈ ℂ)
421fovcl 5983 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
4342adantl 277 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
448cnmetdval 14190 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))))
45 abssub 11113 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4644, 45eqtrd 2210 . . . . . . . . . . 11 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4741, 43, 46syl2anc 411 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4847breq1d 4015 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎 ↔ (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4948biimprd 158 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎 → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
5039, 49imim12d 74 . . . . . . 7 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5150ralimdvva 2546 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
52 breq2 4009 . . . . . . . . . 10 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((𝑏(abs ∘ − )𝑢) < 𝑥 ↔ (𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < )))
53 breq2 4009 . . . . . . . . . 10 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((𝑐(abs ∘ − )𝑣) < 𝑥 ↔ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )))
5452, 53anbi12d 473 . . . . . . . . 9 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) ↔ ((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < ))))
5554imbi1d 231 . . . . . . . 8 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → ((((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
56552ralbidv 2501 . . . . . . 7 (𝑥 = inf({𝑦, 𝑧}, ℝ, < ) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5756rspcev 2843 . . . . . 6 ((inf({𝑦, 𝑧}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < inf({𝑦, 𝑧}, ℝ, < ) ∧ (𝑐(abs ∘ − )𝑣) < inf({𝑦, 𝑧}, ℝ, < )) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
585, 51, 57syl6an 1434 . . . . 5 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5958rexlimdvva 2602 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
603, 59mpd 13 . . 3 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
6160rgen3 2564 . 2 𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)
62 cnxmet 14192 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 addcncntop.j . . . 4 𝐽 = (MetOpen‘(abs ∘ − ))
6463, 63, 63txmetcn 14180 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))))
6562, 62, 62, 64mp3an 1337 . 2 ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
661, 61, 65mpbir2an 942 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {cpr 3595   class class class wbr 4005   × cxp 4626  ccom 4632  wf 5214  cfv 5218  (class class class)co 5878  infcinf 6985  cc 7812  cr 7813   < clt 7995  cmin 8131  +crp 9656  abscabs 11009  ∞Metcxmet 13587  MetOpencmopn 13592   Cn ccn 13846   ×t ctx 13913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-map 6653  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-xneg 9775  df-xadd 9776  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-topgen 12715  df-psmet 13594  df-xmet 13595  df-met 13596  df-bl 13597  df-mopn 13598  df-top 13659  df-topon 13672  df-bases 13704  df-cn 13849  df-cnp 13850  df-tx 13914
This theorem is referenced by:  addcncntop  14213  subcncntop  14214  mulcncntop  14215
  Copyright terms: Public domain W3C validator