![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.29uz | GIF version |
Description: A version of 19.29 1631 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
r19.29uz | ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexuz3.1 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | uztrn2 9610 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
3 | 2 | ex 115 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ (ℤ≥‘𝑗) → 𝑘 ∈ 𝑍)) |
4 | pm3.2 139 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝜓 → (𝜑 ∧ 𝜓)))) |
6 | 3, 5 | imim12d 74 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 → 𝜑) → (𝑘 ∈ (ℤ≥‘𝑗) → (𝜓 → (𝜑 ∧ 𝜓))))) |
7 | 6 | ralimdv2 2564 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)))) |
8 | 7 | impcom 125 | . . . 4 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓))) |
9 | ralim 2553 | . . . 4 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) | |
10 | 8, 9 | syl 14 | . . 3 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
11 | 10 | reximdva 2596 | . 2 ⊢ (∀𝑘 ∈ 𝑍 𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
12 | 11 | imp 124 | 1 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ‘cfv 5254 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltwlin 7985 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-neg 8193 df-z 9318 df-uz 9593 |
This theorem is referenced by: climcaucn 11494 |
Copyright terms: Public domain | W3C validator |