| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.29uz | GIF version | ||
| Description: A version of 19.29 1666 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
| Ref | Expression |
|---|---|
| rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| r19.29uz | ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexuz3.1 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | uztrn2 9736 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 3 | 2 | ex 115 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ (ℤ≥‘𝑗) → 𝑘 ∈ 𝑍)) |
| 4 | pm3.2 139 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝜓 → (𝜑 ∧ 𝜓)))) |
| 6 | 3, 5 | imim12d 74 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 → 𝜑) → (𝑘 ∈ (ℤ≥‘𝑗) → (𝜓 → (𝜑 ∧ 𝜓))))) |
| 7 | 6 | ralimdv2 2600 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)))) |
| 8 | 7 | impcom 125 | . . . 4 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓))) |
| 9 | ralim 2589 | . . . 4 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) | |
| 10 | 8, 9 | syl 14 | . . 3 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
| 11 | 10 | reximdva 2632 | . 2 ⊢ (∀𝑘 ∈ 𝑍 𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
| 12 | 11 | imp 124 | 1 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ‘cfv 5317 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltwlin 8108 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-neg 8316 df-z 9443 df-uz 9719 |
| This theorem is referenced by: climcaucn 11857 |
| Copyright terms: Public domain | W3C validator |