ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29uz GIF version

Theorem r19.29uz 10413
Description: A version of 19.29 1556 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.29uz ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem r19.29uz
StepHypRef Expression
1 rexuz3.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
21uztrn2 9026 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32ex 113 . . . . . . 7 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
4 pm3.2 137 . . . . . . . 8 (𝜑 → (𝜓 → (𝜑𝜓)))
54a1i 9 . . . . . . 7 (𝑗𝑍 → (𝜑 → (𝜓 → (𝜑𝜓))))
63, 5imim12d 73 . . . . . 6 (𝑗𝑍 → ((𝑘𝑍𝜑) → (𝑘 ∈ (ℤ𝑗) → (𝜓 → (𝜑𝜓)))))
76ralimdv2 2443 . . . . 5 (𝑗𝑍 → (∀𝑘𝑍 𝜑 → ∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓))))
87impcom 123 . . . 4 ((∀𝑘𝑍 𝜑𝑗𝑍) → ∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓)))
9 ralim 2434 . . . 4 (∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓)) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
108, 9syl 14 . . 3 ((∀𝑘𝑍 𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
1110reximdva 2475 . 2 (∀𝑘𝑍 𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
1211imp 122 1 ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wral 2359  wrex 2360  cfv 5010  cuz 9009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-cnex 7426  ax-resscn 7427  ax-pre-ltwlin 7448
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-br 3844  df-opab 3898  df-mpt 3899  df-id 4118  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-fv 5018  df-ov 5647  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-neg 7646  df-z 8741  df-uz 9010
This theorem is referenced by:  climcaucn  10727
  Copyright terms: Public domain W3C validator