Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.29uz | GIF version |
Description: A version of 19.29 1613 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
r19.29uz | ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexuz3.1 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | uztrn2 9504 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
3 | 2 | ex 114 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ (ℤ≥‘𝑗) → 𝑘 ∈ 𝑍)) |
4 | pm3.2 138 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝜓 → (𝜑 ∧ 𝜓)))) |
6 | 3, 5 | imim12d 74 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 → 𝜑) → (𝑘 ∈ (ℤ≥‘𝑗) → (𝜓 → (𝜑 ∧ 𝜓))))) |
7 | 6 | ralimdv2 2540 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)))) |
8 | 7 | impcom 124 | . . . 4 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓))) |
9 | ralim 2529 | . . . 4 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) | |
10 | 8, 9 | syl 14 | . . 3 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
11 | 10 | reximdva 2572 | . 2 ⊢ (∀𝑘 ∈ 𝑍 𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
12 | 11 | imp 123 | 1 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ‘cfv 5198 ℤ≥cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltwlin 7887 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: climcaucn 11314 |
Copyright terms: Public domain | W3C validator |