| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > intnanr | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) | 
| Ref | Expression | 
|---|---|
| intnan.1 | 
 | 
| Ref | Expression | 
|---|---|
| intnanr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | intnan.1 | 
. 2
 | |
| 2 | simpl 109 | 
. 2
 | |
| 3 | 1, 2 | mto 663 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: rab0 3479 co02 5183 frec0g 6455 djulclb 7121 xrltnr 9854 pnfnlt 9862 nltmnf 9863 0g0 13019 if0ab 15451 | 
| Copyright terms: Public domain | W3C validator |