Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnanr | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 |
Ref | Expression |
---|---|
intnanr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 | |
2 | simpl 108 | . 2 | |
3 | 1, 2 | mto 652 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in1 604 ax-in2 605 |
This theorem is referenced by: rab0 3437 co02 5117 frec0g 6365 djulclb 7020 xrltnr 9715 pnfnlt 9723 nltmnf 9724 0g0 12607 if0ab 13687 |
Copyright terms: Public domain | W3C validator |