| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanr | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 |
|
| Ref | Expression |
|---|---|
| intnanr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | 1, 2 | mto 666 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: rab0 3520 co02 5241 frec0g 6541 djulclb 7218 xrltnr 9971 pnfnlt 9979 nltmnf 9980 0g0 13404 if0ab 16127 |
| Copyright terms: Public domain | W3C validator |