ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanr Unicode version

Theorem intnanr 930
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1  |-  -.  ph
Assertion
Ref Expression
intnanr  |-  -.  ( ph  /\  ps )

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2  |-  -.  ph
2 simpl 109 . 2  |-  ( (
ph  /\  ps )  ->  ph )
31, 2mto 662 1  |-  -.  ( ph  /\  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 614  ax-in2 615
This theorem is referenced by:  rab0  3453  co02  5144  frec0g  6400  djulclb  7056  xrltnr  9781  pnfnlt  9789  nltmnf  9790  0g0  12800  if0ab  14596
  Copyright terms: Public domain W3C validator