Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > co02 | GIF version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5102 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
2 | rel0 4729 | . 2 ⊢ Rel ∅ | |
3 | noel 3413 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑧〉 ∈ ∅ | |
4 | df-br 3983 | . . . . . . 7 ⊢ (𝑥∅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ ∅) | |
5 | 3, 4 | mtbir 661 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 |
6 | 5 | intnanr 920 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
7 | 6 | nex 1488 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
8 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | vex 2729 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | opelco 4776 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
11 | 7, 10 | mtbir 661 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
12 | noel 3413 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
13 | 11, 12 | 2false 691 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
14 | 1, 2, 13 | eqrelriiv 4698 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∅c0 3409 〈cop 3579 class class class wbr 3982 ∘ ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-co 4613 |
This theorem is referenced by: co01 5118 |
Copyright terms: Public domain | W3C validator |