| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > co02 | GIF version | ||
| Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 5190 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
| 2 | rel0 4808 | . 2 ⊢ Rel ∅ | |
| 3 | noel 3468 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑧〉 ∈ ∅ | |
| 4 | df-br 4052 | . . . . . . 7 ⊢ (𝑥∅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ ∅) | |
| 5 | 3, 4 | mtbir 673 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 |
| 6 | 5 | intnanr 932 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 7 | 6 | nex 1524 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 8 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 9 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | opelco 4858 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
| 11 | 7, 10 | mtbir 673 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
| 12 | noel 3468 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 13 | 11, 12 | 2false 703 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
| 14 | 1, 2, 13 | eqrelriiv 4777 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∅c0 3464 〈cop 3641 class class class wbr 4051 ∘ ccom 4687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-co 4692 |
| This theorem is referenced by: co01 5206 gsumwmhm 13405 |
| Copyright terms: Public domain | W3C validator |