ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co02 GIF version

Theorem co02 5205
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5190 . 2 Rel (𝐴 ∘ ∅)
2 rel0 4808 . 2 Rel ∅
3 noel 3468 . . . . . . 7 ¬ ⟨𝑥, 𝑧⟩ ∈ ∅
4 df-br 4052 . . . . . . 7 (𝑥𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ ∅)
53, 4mtbir 673 . . . . . 6 ¬ 𝑥𝑧
65intnanr 932 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
76nex 1524 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
8 vex 2776 . . . . 5 𝑥 ∈ V
9 vex 2776 . . . . 5 𝑦 ∈ V
108, 9opelco 4858 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
117, 10mtbir 673 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
12 noel 3468 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
1311, 122false 703 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
141, 2, 13eqrelriiv 4777 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1516  wcel 2177  c0 3464  cop 3641   class class class wbr 4051  ccom 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-co 4692
This theorem is referenced by:  co01  5206  gsumwmhm  13405
  Copyright terms: Public domain W3C validator