ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co02 GIF version

Theorem co02 5099
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5084 . 2 Rel (𝐴 ∘ ∅)
2 rel0 4711 . 2 Rel ∅
3 noel 3398 . . . . . . 7 ¬ ⟨𝑥, 𝑧⟩ ∈ ∅
4 df-br 3966 . . . . . . 7 (𝑥𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ ∅)
53, 4mtbir 661 . . . . . 6 ¬ 𝑥𝑧
65intnanr 916 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
76nex 1480 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
8 vex 2715 . . . . 5 𝑥 ∈ V
9 vex 2715 . . . . 5 𝑦 ∈ V
108, 9opelco 4758 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
117, 10mtbir 661 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
12 noel 3398 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
1311, 122false 691 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
141, 2, 13eqrelriiv 4680 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wex 1472  wcel 2128  c0 3394  cop 3563   class class class wbr 3965  ccom 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4592  df-rel 4593  df-co 4595
This theorem is referenced by:  co01  5100
  Copyright terms: Public domain W3C validator