| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > co02 | GIF version | ||
| Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) | 
| Ref | Expression | 
|---|---|
| co02 | ⊢ (𝐴 ∘ ∅) = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relco 5168 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
| 2 | rel0 4788 | . 2 ⊢ Rel ∅ | |
| 3 | noel 3454 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑧〉 ∈ ∅ | |
| 4 | df-br 4034 | . . . . . . 7 ⊢ (𝑥∅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ ∅) | |
| 5 | 3, 4 | mtbir 672 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | 
| 6 | 5 | intnanr 931 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) | 
| 7 | 6 | nex 1514 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) | 
| 8 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 9 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | opelco 4838 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) | 
| 11 | 7, 10 | mtbir 672 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) | 
| 12 | noel 3454 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 13 | 11, 12 | 2false 702 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) | 
| 14 | 1, 2, 13 | eqrelriiv 4757 | 1 ⊢ (𝐴 ∘ ∅) = ∅ | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∅c0 3450 〈cop 3625 class class class wbr 4033 ∘ ccom 4667 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-co 4672 | 
| This theorem is referenced by: co01 5184 gsumwmhm 13130 | 
| Copyright terms: Public domain | W3C validator |