ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co02 GIF version

Theorem co02 5183
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5168 . 2 Rel (𝐴 ∘ ∅)
2 rel0 4788 . 2 Rel ∅
3 noel 3454 . . . . . . 7 ¬ ⟨𝑥, 𝑧⟩ ∈ ∅
4 df-br 4034 . . . . . . 7 (𝑥𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ ∅)
53, 4mtbir 672 . . . . . 6 ¬ 𝑥𝑧
65intnanr 931 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
76nex 1514 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
8 vex 2766 . . . . 5 𝑥 ∈ V
9 vex 2766 . . . . 5 𝑦 ∈ V
108, 9opelco 4838 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
117, 10mtbir 672 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
12 noel 3454 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
1311, 122false 702 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
141, 2, 13eqrelriiv 4757 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  c0 3450  cop 3625   class class class wbr 4033  ccom 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-co 4672
This theorem is referenced by:  co01  5184  gsumwmhm  13130
  Copyright terms: Public domain W3C validator