Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > co02 | GIF version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5109 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
2 | rel0 4736 | . 2 ⊢ Rel ∅ | |
3 | noel 3418 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑧〉 ∈ ∅ | |
4 | df-br 3990 | . . . . . . 7 ⊢ (𝑥∅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ ∅) | |
5 | 3, 4 | mtbir 666 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 |
6 | 5 | intnanr 925 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
7 | 6 | nex 1493 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
8 | vex 2733 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | vex 2733 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | opelco 4783 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
11 | 7, 10 | mtbir 666 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
12 | noel 3418 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
13 | 11, 12 | 2false 696 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
14 | 1, 2, 13 | eqrelriiv 4705 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∅c0 3414 〈cop 3586 class class class wbr 3989 ∘ ccom 4615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-co 4620 |
This theorem is referenced by: co01 5125 |
Copyright terms: Public domain | W3C validator |