![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > co02 | GIF version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5165 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
2 | rel0 4785 | . 2 ⊢ Rel ∅ | |
3 | noel 3451 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑧〉 ∈ ∅ | |
4 | df-br 4031 | . . . . . . 7 ⊢ (𝑥∅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ ∅) | |
5 | 3, 4 | mtbir 672 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 |
6 | 5 | intnanr 931 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
7 | 6 | nex 1511 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
8 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | opelco 4835 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
11 | 7, 10 | mtbir 672 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
12 | noel 3451 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
13 | 11, 12 | 2false 702 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
14 | 1, 2, 13 | eqrelriiv 4754 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∅c0 3447 〈cop 3622 class class class wbr 4030 ∘ ccom 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-co 4669 |
This theorem is referenced by: co01 5181 gsumwmhm 13073 |
Copyright terms: Public domain | W3C validator |