ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co02 GIF version

Theorem co02 5144
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5129 . 2 Rel (𝐴 ∘ ∅)
2 rel0 4753 . 2 Rel ∅
3 noel 3428 . . . . . . 7 ¬ ⟨𝑥, 𝑧⟩ ∈ ∅
4 df-br 4006 . . . . . . 7 (𝑥𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ ∅)
53, 4mtbir 671 . . . . . 6 ¬ 𝑥𝑧
65intnanr 930 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
76nex 1500 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
8 vex 2742 . . . . 5 𝑥 ∈ V
9 vex 2742 . . . . 5 𝑦 ∈ V
108, 9opelco 4801 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
117, 10mtbir 671 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
12 noel 3428 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
1311, 122false 701 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
141, 2, 13eqrelriiv 4722 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wex 1492  wcel 2148  c0 3424  cop 3597   class class class wbr 4005  ccom 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-co 4637
This theorem is referenced by:  co01  5145
  Copyright terms: Public domain W3C validator