ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0g0 GIF version

Theorem 0g0 12630
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0 ∅ = (0g‘∅)

Proof of Theorem 0g0
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4116 . . 3 ∅ ∈ V
2 base0 12465 . . . 4 ∅ = (Base‘∅)
3 eqid 2170 . . . 4 (+g‘∅) = (+g‘∅)
4 eqid 2170 . . . 4 (0g‘∅) = (0g‘∅)
52, 3, 4grpidvalg 12627 . . 3 (∅ ∈ V → (0g‘∅) = (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))))
61, 5ax-mp 5 . 2 (0g‘∅) = (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)))
7 noel 3418 . . . . . 6 ¬ 𝑒 ∈ ∅
87intnanr 925 . . . . 5 ¬ (𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
98nex 1493 . . . 4 ¬ ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
10 euex 2049 . . . 4 (∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)))
119, 10mto 657 . . 3 ¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
12 iotanul 5175 . . 3 (¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅)
1311, 12ax-mp 5 . 2 (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅
146, 13eqtr2i 2192 1 ∅ = (0g‘∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1348  wex 1485  ∃!weu 2019  wcel 2141  wral 2448  Vcvv 2730  c0 3414  cio 5158  cfv 5198  (class class class)co 5853  +gcplusg 12480  0gc0g 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-0g 12598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator