ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0g0 GIF version

Theorem 0g0 12959
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0 ∅ = (0g‘∅)

Proof of Theorem 0g0
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4156 . . 3 ∅ ∈ V
2 base0 12668 . . . 4 ∅ = (Base‘∅)
3 eqid 2193 . . . 4 (+g‘∅) = (+g‘∅)
4 eqid 2193 . . . 4 (0g‘∅) = (0g‘∅)
52, 3, 4grpidvalg 12956 . . 3 (∅ ∈ V → (0g‘∅) = (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))))
61, 5ax-mp 5 . 2 (0g‘∅) = (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)))
7 noel 3450 . . . . . 6 ¬ 𝑒 ∈ ∅
87intnanr 931 . . . . 5 ¬ (𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
98nex 1511 . . . 4 ¬ ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
10 euex 2072 . . . 4 (∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)))
119, 10mto 663 . . 3 ¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
12 iotanul 5230 . . 3 (¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅)
1311, 12ax-mp 5 . 2 (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅
146, 13eqtr2i 2215 1 ∅ = (0g‘∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wex 1503  ∃!weu 2042  wcel 2164  wral 2472  Vcvv 2760  c0 3446  cio 5213  cfv 5254  (class class class)co 5918  +gcplusg 12695  0gc0g 12867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator