Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfnlt | GIF version |
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
pnfnlt | ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 7921 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2424 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
3 | 2 | intnanr 916 | . . . . 5 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) |
4 | 3 | intnanr 916 | . . . 4 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) |
5 | pnfnemnf 7934 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
6 | 5 | neii 2329 | . . . . 5 ⊢ ¬ +∞ = -∞ |
7 | 6 | intnanr 916 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 = +∞) |
8 | 4, 7 | pm3.2ni 803 | . . 3 ⊢ ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) |
9 | 2 | intnanr 916 | . . . 4 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞) |
10 | 6 | intnanr 916 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ) |
11 | 9, 10 | pm3.2ni 803 | . . 3 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)) |
12 | 8, 11 | pm3.2ni 803 | . 2 ⊢ ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
13 | pnfxr 7932 | . . 3 ⊢ +∞ ∈ ℝ* | |
14 | ltxr 9688 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
15 | 13, 14 | mpan 421 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
16 | 12, 15 | mtbiri 665 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1335 ∈ wcel 2128 class class class wbr 3967 ℝcr 7733 <ℝ cltrr 7738 +∞cpnf 7911 -∞cmnf 7912 ℝ*cxr 7913 < clt 7914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-cnex 7825 ax-resscn 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4028 df-xp 4594 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 |
This theorem is referenced by: pnfge 9702 xrltnsym 9706 xrlttr 9708 xrltso 9709 xltnegi 9745 xposdif 9792 qbtwnxr 10166 xrmaxiflemab 11155 xrmaxltsup 11166 |
Copyright terms: Public domain | W3C validator |