ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnlt GIF version

Theorem pnfnlt 9909
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
pnfnlt (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)

Proof of Theorem pnfnlt
StepHypRef Expression
1 pnfnre 8114 . . . . . . 7 +∞ ∉ ℝ
21neli 2473 . . . . . 6 ¬ +∞ ∈ ℝ
32intnanr 932 . . . . 5 ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ)
43intnanr 932 . . . 4 ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴)
5 pnfnemnf 8127 . . . . . 6 +∞ ≠ -∞
65neii 2378 . . . . 5 ¬ +∞ = -∞
76intnanr 932 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 = +∞)
84, 7pm3.2ni 815 . . 3 ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞))
92intnanr 932 . . . 4 ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞)
106intnanr 932 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)
119, 10pm3.2ni 815 . . 3 ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))
128, 11pm3.2ni 815 . 2 ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))
13 pnfxr 8125 . . 3 +∞ ∈ ℝ*
14 ltxr 9897 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1513, 14mpan 424 . 2 (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1612, 15mtbiri 677 1 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176   class class class wbr 4044  cr 7924   < cltrr 7929  +∞cpnf 8104  -∞cmnf 8105  *cxr 8106   < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112
This theorem is referenced by:  pnfge  9911  xrltnsym  9915  xrlttr  9917  xrltso  9918  xltnegi  9957  xposdif  10004  qbtwnxr  10400  xqltnle  10410  xrmaxiflemab  11558  xrmaxltsup  11569
  Copyright terms: Public domain W3C validator