ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnlt GIF version

Theorem pnfnlt 9603
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
pnfnlt (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)

Proof of Theorem pnfnlt
StepHypRef Expression
1 pnfnre 7831 . . . . . . 7 +∞ ∉ ℝ
21neli 2406 . . . . . 6 ¬ +∞ ∈ ℝ
32intnanr 916 . . . . 5 ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ)
43intnanr 916 . . . 4 ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴)
5 pnfnemnf 7844 . . . . . 6 +∞ ≠ -∞
65neii 2311 . . . . 5 ¬ +∞ = -∞
76intnanr 916 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 = +∞)
84, 7pm3.2ni 803 . . 3 ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞))
92intnanr 916 . . . 4 ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞)
106intnanr 916 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)
119, 10pm3.2ni 803 . . 3 ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))
128, 11pm3.2ni 803 . 2 ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))
13 pnfxr 7842 . . 3 +∞ ∈ ℝ*
14 ltxr 9592 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1513, 14mpan 421 . 2 (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1612, 15mtbiri 665 1 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 1481   class class class wbr 3937  cr 7643   < cltrr 7648  +∞cpnf 7821  -∞cmnf 7822  *cxr 7823   < clt 7824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-cnex 7735  ax-resscn 7736
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829
This theorem is referenced by:  pnfge  9605  xrltnsym  9609  xrlttr  9611  xrltso  9612  xltnegi  9648  xposdif  9695  qbtwnxr  10066  xrmaxiflemab  11048  xrmaxltsup  11059
  Copyright terms: Public domain W3C validator