| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfnlt | GIF version | ||
| Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnlt | ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8188 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 2497 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
| 3 | 2 | intnanr 935 | . . . . 5 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) |
| 4 | 3 | intnanr 935 | . . . 4 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) |
| 5 | pnfnemnf 8201 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
| 6 | 5 | neii 2402 | . . . . 5 ⊢ ¬ +∞ = -∞ |
| 7 | 6 | intnanr 935 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 = +∞) |
| 8 | 4, 7 | pm3.2ni 818 | . . 3 ⊢ ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) |
| 9 | 2 | intnanr 935 | . . . 4 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞) |
| 10 | 6 | intnanr 935 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ) |
| 11 | 9, 10 | pm3.2ni 818 | . . 3 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)) |
| 12 | 8, 11 | pm3.2ni 818 | . 2 ⊢ ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
| 13 | pnfxr 8199 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 14 | ltxr 9971 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
| 15 | 13, 14 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
| 16 | 12, 15 | mtbiri 679 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ℝcr 7998 <ℝ cltrr 8003 +∞cpnf 8178 -∞cmnf 8179 ℝ*cxr 8180 < clt 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 |
| This theorem is referenced by: pnfge 9985 xrltnsym 9989 xrlttr 9991 xrltso 9992 xltnegi 10031 xposdif 10078 qbtwnxr 10477 xqltnle 10487 xrmaxiflemab 11758 xrmaxltsup 11769 |
| Copyright terms: Public domain | W3C validator |