Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfnlt | GIF version |
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
pnfnlt | ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 7940 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2433 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
3 | 2 | intnanr 920 | . . . . 5 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) |
4 | 3 | intnanr 920 | . . . 4 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) |
5 | pnfnemnf 7953 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
6 | 5 | neii 2338 | . . . . 5 ⊢ ¬ +∞ = -∞ |
7 | 6 | intnanr 920 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 = +∞) |
8 | 4, 7 | pm3.2ni 803 | . . 3 ⊢ ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) |
9 | 2 | intnanr 920 | . . . 4 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞) |
10 | 6 | intnanr 920 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ) |
11 | 9, 10 | pm3.2ni 803 | . . 3 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)) |
12 | 8, 11 | pm3.2ni 803 | . 2 ⊢ ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
13 | pnfxr 7951 | . . 3 ⊢ +∞ ∈ ℝ* | |
14 | ltxr 9711 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
15 | 13, 14 | mpan 421 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
16 | 12, 15 | mtbiri 665 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 <ℝ cltrr 7757 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 < clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 |
This theorem is referenced by: pnfge 9725 xrltnsym 9729 xrlttr 9731 xrltso 9732 xltnegi 9771 xposdif 9818 qbtwnxr 10193 xrmaxiflemab 11188 xrmaxltsup 11199 |
Copyright terms: Public domain | W3C validator |