ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralunb GIF version

Theorem ralunb 3257
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ralunb (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))

Proof of Theorem ralunb
StepHypRef Expression
1 elun 3217 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 237 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝑥𝐴𝑥𝐵) → 𝜑))
3 jaob 699 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ ((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
42, 3bitri 183 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
54albii 1446 . . 3 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ∀𝑥((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
6 19.26 1457 . . 3 (∀𝑥((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
75, 6bitri 183 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
8 df-ral 2421 . 2 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑))
9 df-ral 2421 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
10 df-ral 2421 . . 3 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
119, 10anbi12i 455 . 2 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
127, 8, 113bitr4i 211 1 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  wal 1329  wcel 1480  wral 2416  cun 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-un 3075
This theorem is referenced by:  ralun  3258  ralprg  3574  raltpg  3576  ralunsn  3724  rexfiuz  10768  modfsummodlemstep  11233  modfsummod  11234  zsupcllemstep  11644  prmind2  11807  nninfsellemdc  13259  nninfsellemsuc  13261
  Copyright terms: Public domain W3C validator