ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralunb GIF version

Theorem ralunb 3354
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ralunb (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))

Proof of Theorem ralunb
StepHypRef Expression
1 elun 3314 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 238 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝑥𝐴𝑥𝐵) → 𝜑))
3 jaob 712 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ ((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
42, 3bitri 184 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
54albii 1493 . . 3 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ∀𝑥((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
6 19.26 1504 . . 3 (∀𝑥((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
75, 6bitri 184 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
8 df-ral 2489 . 2 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑))
9 df-ral 2489 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
10 df-ral 2489 . . 3 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
119, 10anbi12i 460 . 2 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
127, 8, 113bitr4i 212 1 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  wal 1371  wcel 2176  wral 2484  cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170
This theorem is referenced by:  ralun  3355  ralprg  3684  raltpg  3686  ralunsn  3838  dcfi  7083  zsupcllemstep  10372  rexfiuz  11300  modfsummodlemstep  11768  modfsummod  11769  prmind2  12442  2sqlem10  15602  nninfsellemdc  15947  nninfsellemsuc  15949
  Copyright terms: Public domain W3C validator