ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralunb GIF version

Theorem ralunb 3303
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ralunb (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))

Proof of Theorem ralunb
StepHypRef Expression
1 elun 3263 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 237 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝑥𝐴𝑥𝐵) → 𝜑))
3 jaob 700 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ ((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
42, 3bitri 183 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
54albii 1458 . . 3 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ∀𝑥((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)))
6 19.26 1469 . . 3 (∀𝑥((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜑)) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
75, 6bitri 183 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
8 df-ral 2449 . 2 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝜑))
9 df-ral 2449 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
10 df-ral 2449 . . 3 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
119, 10anbi12i 456 . 2 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵𝜑)))
127, 8, 113bitr4i 211 1 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wal 1341  wcel 2136  wral 2444  cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120
This theorem is referenced by:  ralun  3304  ralprg  3627  raltpg  3629  ralunsn  3777  dcfi  6946  rexfiuz  10931  modfsummodlemstep  11398  modfsummod  11399  zsupcllemstep  11878  prmind2  12052  2sqlem10  13601  nninfsellemdc  13890  nninfsellemsuc  13892
  Copyright terms: Public domain W3C validator