![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralunb | GIF version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3278 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
2 | 1 | imbi1i 238 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → 𝜑)) |
3 | jaob 710 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 184 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
5 | 4 | albii 1470 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
6 | 19.26 1481 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
7 | 5, 6 | bitri 184 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
8 | df-ral 2460 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
9 | df-ral 2460 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
10 | df-ral 2460 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
11 | 9, 10 | anbi12i 460 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
12 | 7, 8, 11 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∀wal 1351 ∈ wcel 2148 ∀wral 2455 ∪ cun 3129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-un 3135 |
This theorem is referenced by: ralun 3319 ralprg 3645 raltpg 3647 ralunsn 3799 dcfi 6983 rexfiuz 11001 modfsummodlemstep 11468 modfsummod 11469 zsupcllemstep 11949 prmind2 12123 2sqlem10 14633 nninfsellemdc 14921 nninfsellemsuc 14923 |
Copyright terms: Public domain | W3C validator |