![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intpr | GIF version |
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
intpr.1 | ⊢ 𝐴 ∈ V |
intpr.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
intpr | ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1492 | . . . 4 ⊢ (∀𝑦((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦)) ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) | |
2 | vex 2755 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
3 | 2 | elpr 3631 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) |
4 | 3 | imbi1i 238 | . . . . . 6 ⊢ ((𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦)) |
5 | jaob 711 | . . . . . 6 ⊢ (((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) | |
6 | 4, 5 | bitri 184 | . . . . 5 ⊢ ((𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
7 | 6 | albii 1481 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ∀𝑦((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
8 | intpr.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
9 | 8 | clel4 2888 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ ∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦)) |
10 | intpr.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
11 | 10 | clel4 2888 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↔ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦)) |
12 | 9, 11 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
13 | 1, 7, 12 | 3bitr4i 212 | . . 3 ⊢ (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
14 | vex 2755 | . . . 4 ⊢ 𝑥 ∈ V | |
15 | 14 | elint 3868 | . . 3 ⊢ (𝑥 ∈ ∩ {𝐴, 𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦)) |
16 | elin 3333 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
17 | 13, 15, 16 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ ∩ {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴 ∩ 𝐵)) |
18 | 17 | eqriv 2186 | 1 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ∩ cin 3143 {cpr 3611 ∩ cint 3862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-sn 3616 df-pr 3617 df-int 3863 |
This theorem is referenced by: intprg 3895 op1stb 4499 onintexmid 4593 |
Copyright terms: Public domain | W3C validator |