| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intpr | GIF version | ||
| Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| intpr.1 | ⊢ 𝐴 ∈ V |
| intpr.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| intpr | ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1495 | . . . 4 ⊢ (∀𝑦((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦)) ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) | |
| 2 | vex 2766 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elpr 3643 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) |
| 4 | 3 | imbi1i 238 | . . . . . 6 ⊢ ((𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦)) |
| 5 | jaob 711 | . . . . . 6 ⊢ (((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) | |
| 6 | 4, 5 | bitri 184 | . . . . 5 ⊢ ((𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
| 7 | 6 | albii 1484 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ∀𝑦((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
| 8 | intpr.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 9 | 8 | clel4 2900 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ ∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦)) |
| 10 | intpr.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 11 | 10 | clel4 2900 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↔ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦)) |
| 12 | 9, 11 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
| 13 | 1, 7, 12 | 3bitr4i 212 | . . 3 ⊢ (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 14 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 15 | 14 | elint 3880 | . . 3 ⊢ (𝑥 ∈ ∩ {𝐴, 𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦)) |
| 16 | elin 3346 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 17 | 13, 15, 16 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ ∩ {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴 ∩ 𝐵)) |
| 18 | 17 | eqriv 2193 | 1 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 {cpr 3623 ∩ cint 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-int 3875 |
| This theorem is referenced by: intprg 3907 op1stb 4513 onintexmid 4609 |
| Copyright terms: Public domain | W3C validator |