ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss GIF version

Theorem unss 3378
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.)
Assertion
Ref Expression
unss ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem unss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssalel 3212 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
2 19.26 1527 . . 3 (∀𝑥((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐵𝑥𝐶)) ↔ (∀𝑥(𝑥𝐴𝑥𝐶) ∧ ∀𝑥(𝑥𝐵𝑥𝐶)))
3 elun 3345 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43imbi1i 238 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) → 𝑥𝐶))
5 jaob 715 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐵𝑥𝐶)))
64, 5bitri 184 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐵𝑥𝐶)))
76albii 1516 . . 3 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ∀𝑥((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐵𝑥𝐶)))
8 ssalel 3212 . . . 4 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
9 ssalel 3212 . . . 4 (𝐵𝐶 ↔ ∀𝑥(𝑥𝐵𝑥𝐶))
108, 9anbi12i 460 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (∀𝑥(𝑥𝐴𝑥𝐶) ∧ ∀𝑥(𝑥𝐵𝑥𝐶)))
112, 7, 103bitr4i 212 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ (𝐴𝐶𝐵𝐶))
121, 11bitr2i 185 1 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  wal 1393  wcel 2200  cun 3195  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  unssi  3379  unssd  3380  unssad  3381  unssbd  3382  uneqin  3455  undifss  3572  prss  3823  prssg  3824  tpss  3835  exmid1stab  4291  pwundifss  4373  ordsucss  4593  elomssom  4694  eqrelrel  4817  xpsspw  4828  relun  4833  relcoi2  5255  dfer2  6671  fimaxre2  11724  uncld  14772  plyun0  15395  bdeqsuc  16174
  Copyright terms: Public domain W3C validator