ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intun GIF version

Theorem intun 3933
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
intun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem intun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1507 . . . 4 (∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
2 elun 3325 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32imbi1i 238 . . . . . 6 ((𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑦𝐵) → 𝑥𝑦))
4 jaob 714 . . . . . 6 (((𝑦𝐴𝑦𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
53, 4bitri 184 . . . . 5 ((𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
65albii 1496 . . . 4 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
7 vex 2782 . . . . . 6 𝑥 ∈ V
87elint 3908 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
97elint 3908 . . . . 5 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
108, 9anbi12i 460 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
111, 6, 103bitr4i 212 . . 3 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ (𝑥 𝐴𝑥 𝐵))
127elint 3908 . . 3 (𝑥 (𝐴𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦))
13 elin 3367 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1411, 12, 133bitr4i 212 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1514eqriv 2206 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 712  wal 1373   = wceq 1375  wcel 2180  cun 3175  cin 3176   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-int 3903
This theorem is referenced by:  intunsn  3940  riinint  4961
  Copyright terms: Public domain W3C validator