ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intun GIF version

Theorem intun 3855
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
intun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem intun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1469 . . . 4 (∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
2 elun 3263 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32imbi1i 237 . . . . . 6 ((𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑦𝐵) → 𝑥𝑦))
4 jaob 700 . . . . . 6 (((𝑦𝐴𝑦𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
53, 4bitri 183 . . . . 5 ((𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
65albii 1458 . . . 4 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
7 vex 2729 . . . . . 6 𝑥 ∈ V
87elint 3830 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
97elint 3830 . . . . 5 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
108, 9anbi12i 456 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
111, 6, 103bitr4i 211 . . 3 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ (𝑥 𝐴𝑥 𝐵))
127elint 3830 . . 3 (𝑥 (𝐴𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦))
13 elin 3305 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1411, 12, 133bitr4i 211 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1514eqriv 2162 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  wal 1341   = wceq 1343  wcel 2136  cun 3114  cin 3115   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-int 3825
This theorem is referenced by:  intunsn  3862  riinint  4865
  Copyright terms: Public domain W3C validator