ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moor GIF version

Theorem moor 2124
Description: "At most one" is still the case when a disjunct is removed. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
moor (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)

Proof of Theorem moor
StepHypRef Expression
1 orc 713 . 2 (𝜑 → (𝜑𝜓))
21moimi 2118 1 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709  ∃*wmo 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057
This theorem is referenced by:  mooran2  2126
  Copyright terms: Public domain W3C validator