| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mooran2 | GIF version | ||
| Description: "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| mooran2 | ⊢ (∃*𝑥(𝜑 ∨ 𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moor 2116 | . 2 ⊢ (∃*𝑥(𝜑 ∨ 𝜓) → ∃*𝑥𝜑) | |
| 2 | olc 712 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 3 | 2 | moimi 2110 | . 2 ⊢ (∃*𝑥(𝜑 ∨ 𝜓) → ∃*𝑥𝜓) |
| 4 | 1, 3 | jca 306 | 1 ⊢ (∃*𝑥(𝜑 ∨ 𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |