ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moimi GIF version

Theorem moimi 2084
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.)
Hypothesis
Ref Expression
moimi.1 (𝜑𝜓)
Assertion
Ref Expression
moimi (∃*𝑥𝜓 → ∃*𝑥𝜑)

Proof of Theorem moimi
StepHypRef Expression
1 moim 2083 . 2 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
2 moimi.1 . 2 (𝜑𝜓)
31, 2mpg 1444 1 (∃*𝑥𝜓 → ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  moan  2088  moor  2090  mooran1  2091  mooran2  2092  2moex  2105  2euex  2106  2exeu  2111  mosubt  2907  sndisj  3985  disjxsn  3987  mosubopt  4676  funcnvsn  5243  nfunsn  5530  th3qlem2  6616  shftfn  10788
  Copyright terms: Public domain W3C validator