![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > moimi | GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moim 2019 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
2 | moimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1392 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃*wmo 1956 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 |
This theorem is referenced by: moan 2024 moor 2026 mooran1 2027 mooran2 2028 2moex 2041 2euex 2042 2exeu 2047 mosubt 2806 sndisj 3863 disjxsn 3865 mosubopt 4532 funcnvsn 5093 nfunsn 5373 th3qlem2 6435 shftfn 10389 |
Copyright terms: Public domain | W3C validator |