ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moimi GIF version

Theorem moimi 2107
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.)
Hypothesis
Ref Expression
moimi.1 (𝜑𝜓)
Assertion
Ref Expression
moimi (∃*𝑥𝜓 → ∃*𝑥𝜑)

Proof of Theorem moimi
StepHypRef Expression
1 moim 2106 . 2 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
2 moimi.1 . 2 (𝜑𝜓)
31, 2mpg 1462 1 (∃*𝑥𝜓 → ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  ∃*wmo 2043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046
This theorem is referenced by:  moan  2111  moor  2113  mooran1  2114  mooran2  2115  2moex  2128  2euex  2129  2exeu  2134  mosubt  2937  sndisj  4025  disjxsn  4027  mosubopt  4724  funcnvsn  5299  nfunsn  5589  th3qlem2  6692  shftfn  10968
  Copyright terms: Public domain W3C validator