Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moimi | GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moim 2088 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
2 | moimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1449 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃*wmo 2025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 |
This theorem is referenced by: moan 2093 moor 2095 mooran1 2096 mooran2 2097 2moex 2110 2euex 2111 2exeu 2116 mosubt 2912 sndisj 3994 disjxsn 3996 mosubopt 4685 funcnvsn 5253 nfunsn 5541 th3qlem2 6628 shftfn 10801 |
Copyright terms: Public domain | W3C validator |