Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moimi | GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moim 2078 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
2 | moimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1439 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃*wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: moan 2083 moor 2085 mooran1 2086 mooran2 2087 2moex 2100 2euex 2101 2exeu 2106 mosubt 2903 sndisj 3978 disjxsn 3980 mosubopt 4669 funcnvsn 5233 nfunsn 5520 th3qlem2 6604 shftfn 10766 |
Copyright terms: Public domain | W3C validator |