| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moimi | GIF version | ||
| Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.) |
| Ref | Expression |
|---|---|
| moimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moim 2122 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
| 2 | moimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1477 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃*wmo 2058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 |
| This theorem is referenced by: moan 2127 moor 2129 mooran1 2130 mooran2 2131 2moex 2144 2euex 2145 2exeu 2150 mosubt 2960 sndisj 4058 disjxsn 4060 mosubopt 4761 fununmo 5339 funcnvsn 5342 nfunsn 5638 th3qlem2 6755 shftfn 11301 |
| Copyright terms: Public domain | W3C validator |