Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moimi | GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moim 2083 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
2 | moimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1444 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: moan 2088 moor 2090 mooran1 2091 mooran2 2092 2moex 2105 2euex 2106 2exeu 2111 mosubt 2907 sndisj 3985 disjxsn 3987 mosubopt 4676 funcnvsn 5243 nfunsn 5530 th3qlem2 6616 shftfn 10788 |
Copyright terms: Public domain | W3C validator |