| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moimi | GIF version | ||
| Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.) |
| Ref | Expression |
|---|---|
| moimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moim 2119 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
| 2 | moimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1475 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃*wmo 2056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: moan 2124 moor 2126 mooran1 2127 mooran2 2128 2moex 2141 2euex 2142 2exeu 2147 mosubt 2951 sndisj 4043 disjxsn 4045 mosubopt 4744 fununmo 5321 funcnvsn 5324 nfunsn 5618 th3qlem2 6732 shftfn 11179 |
| Copyright terms: Public domain | W3C validator |