Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iuneq2i | GIF version |
Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2 3882 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
3 | 1, 2 | mprg 2523 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-iun 3868 |
This theorem is referenced by: dfiunv2 3902 iunrab 3913 iunid 3921 iunin1 3930 2iunin 3932 resiun1 4903 resiun2 4904 dfimafn2 5536 dfmpt 5662 rdgival 6350 uniqs 6559 txbasval 12907 |
Copyright terms: Public domain | W3C validator |