ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnviinm GIF version

Theorem cnviinm 5225
Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
cnviinm (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem cnviinm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2266 . . 3 (𝑦 = 𝑎 → (𝑦𝐴𝑎𝐴))
21cbvexv 1942 . 2 (∃𝑦 𝑦𝐴 ↔ ∃𝑎 𝑎𝐴)
3 eleq1w 2266 . . . 4 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
43cbvexv 1942 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
5 relcnv 5061 . . . 4 Rel 𝑥𝐴 𝐵
6 r19.2m 3547 . . . . . . . 8 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝐵 ⊆ (V × V)) → ∃𝑥𝐴 𝐵 ⊆ (V × V))
76expcom 116 . . . . . . 7 (∀𝑥𝐴 𝐵 ⊆ (V × V) → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 𝐵 ⊆ (V × V)))
8 relcnv 5061 . . . . . . . . 9 Rel 𝐵
9 df-rel 4683 . . . . . . . . 9 (Rel 𝐵𝐵 ⊆ (V × V))
108, 9mpbi 145 . . . . . . . 8 𝐵 ⊆ (V × V)
1110a1i 9 . . . . . . 7 (𝑥𝐴𝐵 ⊆ (V × V))
127, 11mprg 2563 . . . . . 6 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 𝐵 ⊆ (V × V))
13 iinss 3979 . . . . . 6 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
1412, 13syl 14 . . . . 5 (∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 ⊆ (V × V))
15 df-rel 4683 . . . . 5 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
1614, 15sylibr 134 . . . 4 (∃𝑥 𝑥𝐴 → Rel 𝑥𝐴 𝐵)
17 vex 2775 . . . . . . . 8 𝑏 ∈ V
18 vex 2775 . . . . . . . 8 𝑎 ∈ V
1917, 18opex 4274 . . . . . . 7 𝑏, 𝑎⟩ ∈ V
20 eliin 3932 . . . . . . 7 (⟨𝑏, 𝑎⟩ ∈ V → (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵))
2119, 20ax-mp 5 . . . . . 6 (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2218, 17opelcnv 4861 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵)
2318, 17opex 4274 . . . . . . . 8 𝑎, 𝑏⟩ ∈ V
24 eliin 3932 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ V → (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵))
2523, 24ax-mp 5 . . . . . . 7 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵)
2618, 17opelcnv 4861 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝐵)
2726ralbii 2512 . . . . . . 7 (∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2825, 27bitri 184 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2921, 22, 283bitr4i 212 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵)
3029eqrelriv 4769 . . . 4 ((Rel 𝑥𝐴 𝐵 ∧ Rel 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
315, 16, 30sylancr 414 . . 3 (∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
324, 31sylbir 135 . 2 (∃𝑎 𝑎𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
332, 32sylbi 121 1 (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wex 1515  wcel 2176  wral 2484  wrex 2485  Vcvv 2772  wss 3166  cop 3636   ciin 3928   × cxp 4674  ccnv 4675  Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-iin 3930  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator