ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnviinm GIF version

Theorem cnviinm 5080
Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
cnviinm (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem cnviinm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2200 . . 3 (𝑦 = 𝑎 → (𝑦𝐴𝑎𝐴))
21cbvexv 1890 . 2 (∃𝑦 𝑦𝐴 ↔ ∃𝑎 𝑎𝐴)
3 eleq1w 2200 . . . 4 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
43cbvexv 1890 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
5 relcnv 4917 . . . 4 Rel 𝑥𝐴 𝐵
6 r19.2m 3449 . . . . . . . 8 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝐵 ⊆ (V × V)) → ∃𝑥𝐴 𝐵 ⊆ (V × V))
76expcom 115 . . . . . . 7 (∀𝑥𝐴 𝐵 ⊆ (V × V) → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 𝐵 ⊆ (V × V)))
8 relcnv 4917 . . . . . . . . 9 Rel 𝐵
9 df-rel 4546 . . . . . . . . 9 (Rel 𝐵𝐵 ⊆ (V × V))
108, 9mpbi 144 . . . . . . . 8 𝐵 ⊆ (V × V)
1110a1i 9 . . . . . . 7 (𝑥𝐴𝐵 ⊆ (V × V))
127, 11mprg 2489 . . . . . 6 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 𝐵 ⊆ (V × V))
13 iinss 3864 . . . . . 6 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
1412, 13syl 14 . . . . 5 (∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 ⊆ (V × V))
15 df-rel 4546 . . . . 5 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
1614, 15sylibr 133 . . . 4 (∃𝑥 𝑥𝐴 → Rel 𝑥𝐴 𝐵)
17 vex 2689 . . . . . . . 8 𝑏 ∈ V
18 vex 2689 . . . . . . . 8 𝑎 ∈ V
1917, 18opex 4151 . . . . . . 7 𝑏, 𝑎⟩ ∈ V
20 eliin 3818 . . . . . . 7 (⟨𝑏, 𝑎⟩ ∈ V → (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵))
2119, 20ax-mp 5 . . . . . 6 (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2218, 17opelcnv 4721 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵)
2318, 17opex 4151 . . . . . . . 8 𝑎, 𝑏⟩ ∈ V
24 eliin 3818 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ V → (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵))
2523, 24ax-mp 5 . . . . . . 7 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵)
2618, 17opelcnv 4721 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝐵)
2726ralbii 2441 . . . . . . 7 (∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2825, 27bitri 183 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2921, 22, 283bitr4i 211 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵)
3029eqrelriv 4632 . . . 4 ((Rel 𝑥𝐴 𝐵 ∧ Rel 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
315, 16, 30sylancr 410 . . 3 (∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
324, 31sylbir 134 . 2 (∃𝑎 𝑎𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
332, 32sylbi 120 1 (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  Vcvv 2686  wss 3071  cop 3530   ciin 3814   × cxp 4537  ccnv 4538  Rel wrel 4544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-iin 3816  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator