| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mprgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 2550 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: ss2rabi 3266 rabnc 3484 ssintub 3893 tron 4418 djussxp 4812 dmiin 4913 dfco2 5170 coiun 5180 tfrlem6 6383 oacl 6527 sbthlem1 7032 peano1nnnn 7938 renfdisj 8105 1nn 9020 ioomax 10042 iccmax 10043 xnn0nnen 10548 fxnn0nninf 10550 fisumcom2 11622 fprodcom2fi 11810 bezoutlemmain 12192 dfphi2 12415 unennn 12641 znnen 12642 istopon 14357 neipsm 14498 lgsquadlem2 15427 bj-omtrans2 15711 nninfomnilem 15773 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |