Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mprgbir | GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 2519 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 145 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: ss2rabi 3224 rabnc 3441 ssintub 3842 tron 4360 djussxp 4749 dmiin 4850 dfco2 5103 coiun 5113 tfrlem6 6284 oacl 6428 sbthlem1 6922 peano1nnnn 7793 renfdisj 7958 1nn 8868 ioomax 9884 iccmax 9885 fxnn0nninf 10373 fisumcom2 11379 fprodcom2fi 11567 bezoutlemmain 11931 dfphi2 12152 unennn 12330 znnen 12331 istopon 12651 neipsm 12794 bj-omtrans2 13839 nninfomnilem 13898 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |