ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mprgbir GIF version

Theorem mprgbir 2555
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
Hypotheses
Ref Expression
mprgbir.1 (𝜑 ↔ ∀𝑥𝐴 𝜓)
mprgbir.2 (𝑥𝐴𝜓)
Assertion
Ref Expression
mprgbir 𝜑

Proof of Theorem mprgbir
StepHypRef Expression
1 mprgbir.2 . . 3 (𝑥𝐴𝜓)
21rgen 2550 . 2 𝑥𝐴 𝜓
3 mprgbir.1 . 2 (𝜑 ↔ ∀𝑥𝐴 𝜓)
42, 3mpbir 146 1 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463
This theorem depends on definitions:  df-bi 117  df-ral 2480
This theorem is referenced by:  ss2rabi  3265  rabnc  3483  ssintub  3892  tron  4417  djussxp  4811  dmiin  4912  dfco2  5169  coiun  5179  tfrlem6  6374  oacl  6518  sbthlem1  7023  peano1nnnn  7919  renfdisj  8086  1nn  9001  ioomax  10023  iccmax  10024  xnn0nnen  10529  fxnn0nninf  10531  fisumcom2  11603  fprodcom2fi  11791  bezoutlemmain  12165  dfphi2  12388  unennn  12614  znnen  12615  istopon  14249  neipsm  14390  lgsquadlem2  15319  bj-omtrans2  15603  nninfomnilem  15662  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator