Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mprgbir | GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 2523 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 145 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-ral 2453 |
This theorem is referenced by: ss2rabi 3229 rabnc 3447 ssintub 3849 tron 4367 djussxp 4756 dmiin 4857 dfco2 5110 coiun 5120 tfrlem6 6295 oacl 6439 sbthlem1 6934 peano1nnnn 7814 renfdisj 7979 1nn 8889 ioomax 9905 iccmax 9906 fxnn0nninf 10394 fisumcom2 11401 fprodcom2fi 11589 bezoutlemmain 11953 dfphi2 12174 unennn 12352 znnen 12353 istopon 12805 neipsm 12948 bj-omtrans2 13992 nninfomnilem 14051 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |