| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mprgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 2550 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: ss2rabi 3265 rabnc 3483 ssintub 3892 tron 4417 djussxp 4811 dmiin 4912 dfco2 5169 coiun 5179 tfrlem6 6374 oacl 6518 sbthlem1 7023 peano1nnnn 7919 renfdisj 8086 1nn 9001 ioomax 10023 iccmax 10024 xnn0nnen 10529 fxnn0nninf 10531 fisumcom2 11603 fprodcom2fi 11791 bezoutlemmain 12165 dfphi2 12388 unennn 12614 znnen 12615 istopon 14249 neipsm 14390 lgsquadlem2 15319 bj-omtrans2 15603 nninfomnilem 15662 exmidsbthrlem 15666 |
| Copyright terms: Public domain | W3C validator |