| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mprgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 2559 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: ss2rabi 3275 rabnc 3493 ssintub 3903 tron 4429 djussxp 4823 dmiin 4924 dfco2 5182 coiun 5192 tfrlem6 6402 oacl 6546 sbthlem1 7059 peano1nnnn 7965 renfdisj 8132 1nn 9047 ioomax 10070 iccmax 10071 xnn0nnen 10582 fxnn0nninf 10584 fisumcom2 11749 fprodcom2fi 11937 bezoutlemmain 12319 dfphi2 12542 unennn 12768 znnen 12769 istopon 14485 neipsm 14626 lgsquadlem2 15555 bj-omtrans2 15893 nninfomnilem 15955 exmidsbthrlem 15961 |
| Copyright terms: Public domain | W3C validator |