![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mprgbir | GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 2547 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-ral 2477 |
This theorem is referenced by: ss2rabi 3261 rabnc 3479 ssintub 3888 tron 4413 djussxp 4807 dmiin 4908 dfco2 5165 coiun 5175 tfrlem6 6369 oacl 6513 sbthlem1 7016 peano1nnnn 7912 renfdisj 8079 1nn 8993 ioomax 10014 iccmax 10015 xnn0nnen 10508 fxnn0nninf 10510 fisumcom2 11581 fprodcom2fi 11769 bezoutlemmain 12135 dfphi2 12358 unennn 12554 znnen 12555 istopon 14181 neipsm 14322 bj-omtrans2 15449 nninfomnilem 15508 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |