| Step | Hyp | Ref
| Expression |
| 1 | | bj-omex 15672 |
. . 3
⊢ ω
∈ V |
| 2 | | sseq2 3208 |
. . . . . 6
⊢ (𝑎 = ω → (𝑦 ⊆ 𝑎 ↔ 𝑦 ⊆ ω)) |
| 3 | | sseq2 3208 |
. . . . . 6
⊢ (𝑎 = ω → (suc 𝑦 ⊆ 𝑎 ↔ suc 𝑦 ⊆ ω)) |
| 4 | 2, 3 | imbi12d 234 |
. . . . 5
⊢ (𝑎 = ω → ((𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎) ↔ (𝑦 ⊆ ω → suc 𝑦 ⊆
ω))) |
| 5 | 4 | ralbidv 2497 |
. . . 4
⊢ (𝑎 = ω → (∀𝑦 ∈ ω (𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎) ↔ ∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆
ω))) |
| 6 | | sseq2 3208 |
. . . . 5
⊢ (𝑎 = ω → (𝐴 ⊆ 𝑎 ↔ 𝐴 ⊆ ω)) |
| 7 | 6 | imbi2d 230 |
. . . 4
⊢ (𝑎 = ω → ((𝐴 ∈ ω → 𝐴 ⊆ 𝑎) ↔ (𝐴 ∈ ω → 𝐴 ⊆ ω))) |
| 8 | 5, 7 | imbi12d 234 |
. . 3
⊢ (𝑎 = ω →
((∀𝑦 ∈ ω
(𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎) → (𝐴 ∈ ω → 𝐴 ⊆ 𝑎)) ↔ (∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω) → (𝐴 ∈ ω → 𝐴 ⊆
ω)))) |
| 9 | | 0ss 3490 |
. . . 4
⊢ ∅
⊆ 𝑎 |
| 10 | | bdcv 15578 |
. . . . . 6
⊢
BOUNDED 𝑎 |
| 11 | 10 | bdss 15594 |
. . . . 5
⊢
BOUNDED 𝑥 ⊆ 𝑎 |
| 12 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑥∅
⊆ 𝑎 |
| 13 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑥 𝑦 ⊆ 𝑎 |
| 14 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑥 suc 𝑦 ⊆ 𝑎 |
| 15 | | sseq1 3207 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝑎 ↔ ∅ ⊆ 𝑎)) |
| 16 | 15 | biimprd 158 |
. . . . 5
⊢ (𝑥 = ∅ → (∅
⊆ 𝑎 → 𝑥 ⊆ 𝑎)) |
| 17 | | sseq1 3207 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑎 ↔ 𝑦 ⊆ 𝑎)) |
| 18 | 17 | biimpd 144 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑎 → 𝑦 ⊆ 𝑎)) |
| 19 | | sseq1 3207 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ⊆ 𝑎 ↔ suc 𝑦 ⊆ 𝑎)) |
| 20 | 19 | biimprd 158 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (suc 𝑦 ⊆ 𝑎 → 𝑥 ⊆ 𝑎)) |
| 21 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑥𝐴 |
| 22 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑥 𝐴 ⊆ 𝑎 |
| 23 | | sseq1 3207 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑎 ↔ 𝐴 ⊆ 𝑎)) |
| 24 | 23 | biimpd 144 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑎 → 𝐴 ⊆ 𝑎)) |
| 25 | 11, 12, 13, 14, 16, 18, 20, 21, 22, 24 | bj-bdfindisg 15678 |
. . . 4
⊢ ((∅
⊆ 𝑎 ∧
∀𝑦 ∈ ω
(𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎)) → (𝐴 ∈ ω → 𝐴 ⊆ 𝑎)) |
| 26 | 9, 25 | mpan 424 |
. . 3
⊢
(∀𝑦 ∈
ω (𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎) → (𝐴 ∈ ω → 𝐴 ⊆ 𝑎)) |
| 27 | 1, 8, 26 | vtocl 2818 |
. 2
⊢
(∀𝑦 ∈
ω (𝑦 ⊆ ω
→ suc 𝑦 ⊆
ω) → (𝐴 ∈
ω → 𝐴 ⊆
ω)) |
| 28 | | df-suc 4407 |
. . . 4
⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) |
| 29 | | simpr 110 |
. . . . 5
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ⊆
ω) |
| 30 | | simpl 109 |
. . . . . 6
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ∈
ω) |
| 31 | 30 | snssd 3768 |
. . . . 5
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → {𝑦} ⊆
ω) |
| 32 | 29, 31 | unssd 3340 |
. . . 4
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → (𝑦 ∪ {𝑦}) ⊆ ω) |
| 33 | 28, 32 | eqsstrid 3230 |
. . 3
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → suc
𝑦 ⊆
ω) |
| 34 | 33 | ex 115 |
. 2
⊢ (𝑦 ∈ ω → (𝑦 ⊆ ω → suc
𝑦 ⊆
ω)) |
| 35 | 27, 34 | mprg 2554 |
1
⊢ (𝐴 ∈ ω → 𝐴 ⊆
ω) |