Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omtrans GIF version

Theorem bj-omtrans 13298
 Description: The set ω is transitive. A natural number is included in ω. Constructive proof of elnn 4522. The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥 ⊆ 𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omtrans (𝐴 ∈ ω → 𝐴 ⊆ ω)

Proof of Theorem bj-omtrans
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-omex 13284 . . 3 ω ∈ V
2 sseq2 3121 . . . . . 6 (𝑎 = ω → (𝑦𝑎𝑦 ⊆ ω))
3 sseq2 3121 . . . . . 6 (𝑎 = ω → (suc 𝑦𝑎 ↔ suc 𝑦 ⊆ ω))
42, 3imbi12d 233 . . . . 5 (𝑎 = ω → ((𝑦𝑎 → suc 𝑦𝑎) ↔ (𝑦 ⊆ ω → suc 𝑦 ⊆ ω)))
54ralbidv 2437 . . . 4 (𝑎 = ω → (∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) ↔ ∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω)))
6 sseq2 3121 . . . . 5 (𝑎 = ω → (𝐴𝑎𝐴 ⊆ ω))
76imbi2d 229 . . . 4 (𝑎 = ω → ((𝐴 ∈ ω → 𝐴𝑎) ↔ (𝐴 ∈ ω → 𝐴 ⊆ ω)))
85, 7imbi12d 233 . . 3 (𝑎 = ω → ((∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) → (𝐴 ∈ ω → 𝐴𝑎)) ↔ (∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω) → (𝐴 ∈ ω → 𝐴 ⊆ ω))))
9 0ss 3401 . . . 4 ∅ ⊆ 𝑎
10 bdcv 13190 . . . . . 6 BOUNDED 𝑎
1110bdss 13206 . . . . 5 BOUNDED 𝑥𝑎
12 nfv 1508 . . . . 5 𝑥∅ ⊆ 𝑎
13 nfv 1508 . . . . 5 𝑥 𝑦𝑎
14 nfv 1508 . . . . 5 𝑥 suc 𝑦𝑎
15 sseq1 3120 . . . . . 6 (𝑥 = ∅ → (𝑥𝑎 ↔ ∅ ⊆ 𝑎))
1615biimprd 157 . . . . 5 (𝑥 = ∅ → (∅ ⊆ 𝑎𝑥𝑎))
17 sseq1 3120 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑎𝑦𝑎))
1817biimpd 143 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑎𝑦𝑎))
19 sseq1 3120 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑎 ↔ suc 𝑦𝑎))
2019biimprd 157 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝑦𝑎𝑥𝑎))
21 nfcv 2281 . . . . 5 𝑥𝐴
22 nfv 1508 . . . . 5 𝑥 𝐴𝑎
23 sseq1 3120 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑎𝐴𝑎))
2423biimpd 143 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑎𝐴𝑎))
2511, 12, 13, 14, 16, 18, 20, 21, 22, 24bj-bdfindisg 13290 . . . 4 ((∅ ⊆ 𝑎 ∧ ∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎)) → (𝐴 ∈ ω → 𝐴𝑎))
269, 25mpan 420 . . 3 (∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) → (𝐴 ∈ ω → 𝐴𝑎))
271, 8, 26vtocl 2740 . 2 (∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω) → (𝐴 ∈ ω → 𝐴 ⊆ ω))
28 df-suc 4296 . . . 4 suc 𝑦 = (𝑦 ∪ {𝑦})
29 simpr 109 . . . . 5 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ⊆ ω)
30 simpl 108 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ∈ ω)
3130snssd 3668 . . . . 5 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → {𝑦} ⊆ ω)
3229, 31unssd 3252 . . . 4 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → (𝑦 ∪ {𝑦}) ⊆ ω)
3328, 32eqsstrid 3143 . . 3 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → suc 𝑦 ⊆ ω)
3433ex 114 . 2 (𝑦 ∈ ω → (𝑦 ⊆ ω → suc 𝑦 ⊆ ω))
3527, 34mprg 2489 1 (𝐴 ∈ ω → 𝐴 ⊆ ω)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480  ∀wral 2416   ∪ cun 3069   ⊆ wss 3071  ∅c0 3363  {csn 3527  suc csuc 4290  ωcom 4507 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-nul 4057  ax-pr 4134  ax-un 4358  ax-bd0 13155  ax-bdor 13158  ax-bdal 13160  ax-bdex 13161  ax-bdeq 13162  ax-bdel 13163  ax-bdsb 13164  ax-bdsep 13226  ax-infvn 13283 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-uni 3740  df-int 3775  df-suc 4296  df-iom 4508  df-bdc 13183  df-bj-ind 13269 This theorem is referenced by:  bj-omtrans2  13299  bj-nnord  13300  bj-nn0suc  13306
 Copyright terms: Public domain W3C validator