Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omtrans GIF version

Theorem bj-omtrans 15448
Description: The set ω is transitive. A natural number is included in ω. Constructive proof of elnn 4638.

The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-omtrans (𝐴 ∈ ω → 𝐴 ⊆ ω)

Proof of Theorem bj-omtrans
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-omex 15434 . . 3 ω ∈ V
2 sseq2 3203 . . . . . 6 (𝑎 = ω → (𝑦𝑎𝑦 ⊆ ω))
3 sseq2 3203 . . . . . 6 (𝑎 = ω → (suc 𝑦𝑎 ↔ suc 𝑦 ⊆ ω))
42, 3imbi12d 234 . . . . 5 (𝑎 = ω → ((𝑦𝑎 → suc 𝑦𝑎) ↔ (𝑦 ⊆ ω → suc 𝑦 ⊆ ω)))
54ralbidv 2494 . . . 4 (𝑎 = ω → (∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) ↔ ∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω)))
6 sseq2 3203 . . . . 5 (𝑎 = ω → (𝐴𝑎𝐴 ⊆ ω))
76imbi2d 230 . . . 4 (𝑎 = ω → ((𝐴 ∈ ω → 𝐴𝑎) ↔ (𝐴 ∈ ω → 𝐴 ⊆ ω)))
85, 7imbi12d 234 . . 3 (𝑎 = ω → ((∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) → (𝐴 ∈ ω → 𝐴𝑎)) ↔ (∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω) → (𝐴 ∈ ω → 𝐴 ⊆ ω))))
9 0ss 3485 . . . 4 ∅ ⊆ 𝑎
10 bdcv 15340 . . . . . 6 BOUNDED 𝑎
1110bdss 15356 . . . . 5 BOUNDED 𝑥𝑎
12 nfv 1539 . . . . 5 𝑥∅ ⊆ 𝑎
13 nfv 1539 . . . . 5 𝑥 𝑦𝑎
14 nfv 1539 . . . . 5 𝑥 suc 𝑦𝑎
15 sseq1 3202 . . . . . 6 (𝑥 = ∅ → (𝑥𝑎 ↔ ∅ ⊆ 𝑎))
1615biimprd 158 . . . . 5 (𝑥 = ∅ → (∅ ⊆ 𝑎𝑥𝑎))
17 sseq1 3202 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑎𝑦𝑎))
1817biimpd 144 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑎𝑦𝑎))
19 sseq1 3202 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑎 ↔ suc 𝑦𝑎))
2019biimprd 158 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝑦𝑎𝑥𝑎))
21 nfcv 2336 . . . . 5 𝑥𝐴
22 nfv 1539 . . . . 5 𝑥 𝐴𝑎
23 sseq1 3202 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑎𝐴𝑎))
2423biimpd 144 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑎𝐴𝑎))
2511, 12, 13, 14, 16, 18, 20, 21, 22, 24bj-bdfindisg 15440 . . . 4 ((∅ ⊆ 𝑎 ∧ ∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎)) → (𝐴 ∈ ω → 𝐴𝑎))
269, 25mpan 424 . . 3 (∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) → (𝐴 ∈ ω → 𝐴𝑎))
271, 8, 26vtocl 2814 . 2 (∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω) → (𝐴 ∈ ω → 𝐴 ⊆ ω))
28 df-suc 4402 . . . 4 suc 𝑦 = (𝑦 ∪ {𝑦})
29 simpr 110 . . . . 5 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ⊆ ω)
30 simpl 109 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ∈ ω)
3130snssd 3763 . . . . 5 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → {𝑦} ⊆ ω)
3229, 31unssd 3335 . . . 4 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → (𝑦 ∪ {𝑦}) ⊆ ω)
3328, 32eqsstrid 3225 . . 3 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → suc 𝑦 ⊆ ω)
3433ex 115 . 2 (𝑦 ∈ ω → (𝑦 ⊆ ω → suc 𝑦 ⊆ ω))
3527, 34mprg 2551 1 (𝐴 ∈ ω → 𝐴 ⊆ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  cun 3151  wss 3153  c0 3446  {csn 3618  suc csuc 4396  ωcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdor 15308  ax-bdal 15310  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376  ax-infvn 15433
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by:  bj-omtrans2  15449  bj-nnord  15450  bj-nn0suc  15456
  Copyright terms: Public domain W3C validator