Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omtrans GIF version

Theorem bj-omtrans 12837
Description: The set ω is transitive. A natural number is included in ω. Constructive proof of elnn 4477.

The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-omtrans (𝐴 ∈ ω → 𝐴 ⊆ ω)

Proof of Theorem bj-omtrans
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-omex 12823 . . 3 ω ∈ V
2 sseq2 3085 . . . . . 6 (𝑎 = ω → (𝑦𝑎𝑦 ⊆ ω))
3 sseq2 3085 . . . . . 6 (𝑎 = ω → (suc 𝑦𝑎 ↔ suc 𝑦 ⊆ ω))
42, 3imbi12d 233 . . . . 5 (𝑎 = ω → ((𝑦𝑎 → suc 𝑦𝑎) ↔ (𝑦 ⊆ ω → suc 𝑦 ⊆ ω)))
54ralbidv 2409 . . . 4 (𝑎 = ω → (∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) ↔ ∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω)))
6 sseq2 3085 . . . . 5 (𝑎 = ω → (𝐴𝑎𝐴 ⊆ ω))
76imbi2d 229 . . . 4 (𝑎 = ω → ((𝐴 ∈ ω → 𝐴𝑎) ↔ (𝐴 ∈ ω → 𝐴 ⊆ ω)))
85, 7imbi12d 233 . . 3 (𝑎 = ω → ((∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) → (𝐴 ∈ ω → 𝐴𝑎)) ↔ (∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω) → (𝐴 ∈ ω → 𝐴 ⊆ ω))))
9 0ss 3365 . . . 4 ∅ ⊆ 𝑎
10 bdcv 12729 . . . . . 6 BOUNDED 𝑎
1110bdss 12745 . . . . 5 BOUNDED 𝑥𝑎
12 nfv 1489 . . . . 5 𝑥∅ ⊆ 𝑎
13 nfv 1489 . . . . 5 𝑥 𝑦𝑎
14 nfv 1489 . . . . 5 𝑥 suc 𝑦𝑎
15 sseq1 3084 . . . . . 6 (𝑥 = ∅ → (𝑥𝑎 ↔ ∅ ⊆ 𝑎))
1615biimprd 157 . . . . 5 (𝑥 = ∅ → (∅ ⊆ 𝑎𝑥𝑎))
17 sseq1 3084 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑎𝑦𝑎))
1817biimpd 143 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑎𝑦𝑎))
19 sseq1 3084 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑎 ↔ suc 𝑦𝑎))
2019biimprd 157 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝑦𝑎𝑥𝑎))
21 nfcv 2253 . . . . 5 𝑥𝐴
22 nfv 1489 . . . . 5 𝑥 𝐴𝑎
23 sseq1 3084 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑎𝐴𝑎))
2423biimpd 143 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑎𝐴𝑎))
2511, 12, 13, 14, 16, 18, 20, 21, 22, 24bj-bdfindisg 12829 . . . 4 ((∅ ⊆ 𝑎 ∧ ∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎)) → (𝐴 ∈ ω → 𝐴𝑎))
269, 25mpan 418 . . 3 (∀𝑦 ∈ ω (𝑦𝑎 → suc 𝑦𝑎) → (𝐴 ∈ ω → 𝐴𝑎))
271, 8, 26vtocl 2709 . 2 (∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω) → (𝐴 ∈ ω → 𝐴 ⊆ ω))
28 df-suc 4251 . . . 4 suc 𝑦 = (𝑦 ∪ {𝑦})
29 simpr 109 . . . . 5 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ⊆ ω)
30 simpl 108 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ∈ ω)
3130snssd 3629 . . . . 5 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → {𝑦} ⊆ ω)
3229, 31unssd 3216 . . . 4 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → (𝑦 ∪ {𝑦}) ⊆ ω)
3328, 32syl5eqss 3107 . . 3 ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → suc 𝑦 ⊆ ω)
3433ex 114 . 2 (𝑦 ∈ ω → (𝑦 ⊆ ω → suc 𝑦 ⊆ ω))
3527, 34mprg 2461 1 (𝐴 ∈ ω → 𝐴 ⊆ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1312  wcel 1461  wral 2388  cun 3033  wss 3035  c0 3327  {csn 3491  suc csuc 4245  ωcom 4462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-nul 4012  ax-pr 4089  ax-un 4313  ax-bd0 12694  ax-bdor 12697  ax-bdal 12699  ax-bdex 12700  ax-bdeq 12701  ax-bdel 12702  ax-bdsb 12703  ax-bdsep 12765  ax-infvn 12822
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-sn 3497  df-pr 3498  df-uni 3701  df-int 3736  df-suc 4251  df-iom 4463  df-bdc 12722  df-bj-ind 12808
This theorem is referenced by:  bj-omtrans2  12838  bj-nnord  12839  bj-nn0suc  12845
  Copyright terms: Public domain W3C validator