| Step | Hyp | Ref
 | Expression | 
| 1 |   | bj-omex 15588 | 
. . 3
⊢ ω
∈ V | 
| 2 |   | sseq2 3207 | 
. . . . . 6
⊢ (𝑎 = ω → (𝑦 ⊆ 𝑎 ↔ 𝑦 ⊆ ω)) | 
| 3 |   | sseq2 3207 | 
. . . . . 6
⊢ (𝑎 = ω → (suc 𝑦 ⊆ 𝑎 ↔ suc 𝑦 ⊆ ω)) | 
| 4 | 2, 3 | imbi12d 234 | 
. . . . 5
⊢ (𝑎 = ω → ((𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎) ↔ (𝑦 ⊆ ω → suc 𝑦 ⊆
ω))) | 
| 5 | 4 | ralbidv 2497 | 
. . . 4
⊢ (𝑎 = ω → (∀𝑦 ∈ ω (𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎) ↔ ∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆
ω))) | 
| 6 |   | sseq2 3207 | 
. . . . 5
⊢ (𝑎 = ω → (𝐴 ⊆ 𝑎 ↔ 𝐴 ⊆ ω)) | 
| 7 | 6 | imbi2d 230 | 
. . . 4
⊢ (𝑎 = ω → ((𝐴 ∈ ω → 𝐴 ⊆ 𝑎) ↔ (𝐴 ∈ ω → 𝐴 ⊆ ω))) | 
| 8 | 5, 7 | imbi12d 234 | 
. . 3
⊢ (𝑎 = ω →
((∀𝑦 ∈ ω
(𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎) → (𝐴 ∈ ω → 𝐴 ⊆ 𝑎)) ↔ (∀𝑦 ∈ ω (𝑦 ⊆ ω → suc 𝑦 ⊆ ω) → (𝐴 ∈ ω → 𝐴 ⊆
ω)))) | 
| 9 |   | 0ss 3489 | 
. . . 4
⊢ ∅
⊆ 𝑎 | 
| 10 |   | bdcv 15494 | 
. . . . . 6
⊢
BOUNDED 𝑎 | 
| 11 | 10 | bdss 15510 | 
. . . . 5
⊢
BOUNDED 𝑥 ⊆ 𝑎 | 
| 12 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑥∅
⊆ 𝑎 | 
| 13 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑥 𝑦 ⊆ 𝑎 | 
| 14 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑥 suc 𝑦 ⊆ 𝑎 | 
| 15 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝑎 ↔ ∅ ⊆ 𝑎)) | 
| 16 | 15 | biimprd 158 | 
. . . . 5
⊢ (𝑥 = ∅ → (∅
⊆ 𝑎 → 𝑥 ⊆ 𝑎)) | 
| 17 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑎 ↔ 𝑦 ⊆ 𝑎)) | 
| 18 | 17 | biimpd 144 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑎 → 𝑦 ⊆ 𝑎)) | 
| 19 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ⊆ 𝑎 ↔ suc 𝑦 ⊆ 𝑎)) | 
| 20 | 19 | biimprd 158 | 
. . . . 5
⊢ (𝑥 = suc 𝑦 → (suc 𝑦 ⊆ 𝑎 → 𝑥 ⊆ 𝑎)) | 
| 21 |   | nfcv 2339 | 
. . . . 5
⊢
Ⅎ𝑥𝐴 | 
| 22 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑥 𝐴 ⊆ 𝑎 | 
| 23 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑎 ↔ 𝐴 ⊆ 𝑎)) | 
| 24 | 23 | biimpd 144 | 
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑎 → 𝐴 ⊆ 𝑎)) | 
| 25 | 11, 12, 13, 14, 16, 18, 20, 21, 22, 24 | bj-bdfindisg 15594 | 
. . . 4
⊢ ((∅
⊆ 𝑎 ∧
∀𝑦 ∈ ω
(𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎)) → (𝐴 ∈ ω → 𝐴 ⊆ 𝑎)) | 
| 26 | 9, 25 | mpan 424 | 
. . 3
⊢
(∀𝑦 ∈
ω (𝑦 ⊆ 𝑎 → suc 𝑦 ⊆ 𝑎) → (𝐴 ∈ ω → 𝐴 ⊆ 𝑎)) | 
| 27 | 1, 8, 26 | vtocl 2818 | 
. 2
⊢
(∀𝑦 ∈
ω (𝑦 ⊆ ω
→ suc 𝑦 ⊆
ω) → (𝐴 ∈
ω → 𝐴 ⊆
ω)) | 
| 28 |   | df-suc 4406 | 
. . . 4
⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | 
| 29 |   | simpr 110 | 
. . . . 5
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ⊆
ω) | 
| 30 |   | simpl 109 | 
. . . . . 6
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → 𝑦 ∈
ω) | 
| 31 | 30 | snssd 3767 | 
. . . . 5
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → {𝑦} ⊆
ω) | 
| 32 | 29, 31 | unssd 3339 | 
. . . 4
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → (𝑦 ∪ {𝑦}) ⊆ ω) | 
| 33 | 28, 32 | eqsstrid 3229 | 
. . 3
⊢ ((𝑦 ∈ ω ∧ 𝑦 ⊆ ω) → suc
𝑦 ⊆
ω) | 
| 34 | 33 | ex 115 | 
. 2
⊢ (𝑦 ∈ ω → (𝑦 ⊆ ω → suc
𝑦 ⊆
ω)) | 
| 35 | 27, 34 | mprg 2554 | 
1
⊢ (𝐴 ∈ ω → 𝐴 ⊆
ω) |