Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximia GIF version

Theorem reximia 2528
 Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.)
Hypothesis
Ref Expression
reximia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
reximia (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)

Proof of Theorem reximia
StepHypRef Expression
1 rexim 2527 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
2 reximia.1 . 2 (𝑥𝐴 → (𝜑𝜓))
31, 2mprg 2490 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1481  ∃wrex 2418 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1488  ax-ial 1515 This theorem depends on definitions:  df-bi 116  df-ral 2422  df-rex 2423 This theorem is referenced by:  reximi  2530  iunpw  4405  nsmallnqq  7240  1idprl  7418  1idpru  7419  qmulz  9438  zq  9441  caubnd2  10917  sin0pilem1  12901
 Copyright terms: Public domain W3C validator