| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximia | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| reximia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexim 2604 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | reximia.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mprg 2567 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ∃wrex 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 df-ral 2493 df-rex 2494 |
| This theorem is referenced by: reximi 2607 iunpw 4548 nsmallnqq 7567 1idprl 7745 1idpru 7746 qmulz 9786 zq 9789 caubnd2 11594 sin0pilem1 15420 |
| Copyright terms: Public domain | W3C validator |