ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximia GIF version

Theorem reximia 2570
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.)
Hypothesis
Ref Expression
reximia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
reximia (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)

Proof of Theorem reximia
StepHypRef Expression
1 rexim 2569 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
2 reximia.1 . 2 (𝑥𝐴 → (𝜑𝜓))
31, 2mprg 2532 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2146  wrex 2454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-ral 2458  df-rex 2459
This theorem is referenced by:  reximi  2572  iunpw  4474  nsmallnqq  7386  1idprl  7564  1idpru  7565  qmulz  9596  zq  9599  caubnd2  11094  sin0pilem1  13773
  Copyright terms: Public domain W3C validator