| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixpintm | GIF version | ||
| Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.) |
| Ref | Expression |
|---|---|
| ixpintm | ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2 6799 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦 → X𝑥 ∈ 𝐴 ∩ 𝐵 = X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦) | |
| 2 | intiin 3982 | . . . 4 ⊢ ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦) |
| 4 | 1, 3 | mprg 2563 | . 2 ⊢ X𝑥 ∈ 𝐴 ∩ 𝐵 = X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦 |
| 5 | ixpiinm 6811 | . 2 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) | |
| 6 | 4, 5 | eqtrid 2250 | 1 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ∩ cint 3885 ∩ ciin 3928 Xcixp 6785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iin 3930 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ixp 6786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |