Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpintm | GIF version |
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.) |
Ref | Expression |
---|---|
ixpintm | ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2 6678 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦 → X𝑥 ∈ 𝐴 ∩ 𝐵 = X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦) | |
2 | intiin 3920 | . . . 4 ⊢ ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦 | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 𝑦) |
4 | 1, 3 | mprg 2523 | . 2 ⊢ X𝑥 ∈ 𝐴 ∩ 𝐵 = X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦 |
5 | ixpiinm 6690 | . 2 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝑦 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) | |
6 | 4, 5 | syl5eq 2211 | 1 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∩ cint 3824 ∩ ciin 3867 Xcixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iin 3869 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ixp 6665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |