ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpintm GIF version

Theorem ixpintm 6779
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpintm (∃𝑧 𝑧𝐵X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝑧,𝐵
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem ixpintm
StepHypRef Expression
1 ixpeq2 6766 . . 3 (∀𝑥𝐴 𝐵 = 𝑦𝐵 𝑦X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦)
2 intiin 3967 . . . 4 𝐵 = 𝑦𝐵 𝑦
32a1i 9 . . 3 (𝑥𝐴 𝐵 = 𝑦𝐵 𝑦)
41, 3mprg 2551 . 2 X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦
5 ixpiinm 6778 . 2 (∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝑦 = 𝑦𝐵 X𝑥𝐴 𝑦)
64, 5eqtrid 2238 1 (∃𝑧 𝑧𝐵X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1503  wcel 2164   cint 3870   ciin 3913  Xcixp 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iin 3915  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ixp 6753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator