ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpintm GIF version

Theorem ixpintm 6872
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpintm (∃𝑧 𝑧𝐵X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝑧,𝐵
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem ixpintm
StepHypRef Expression
1 ixpeq2 6859 . . 3 (∀𝑥𝐴 𝐵 = 𝑦𝐵 𝑦X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦)
2 intiin 4020 . . . 4 𝐵 = 𝑦𝐵 𝑦
32a1i 9 . . 3 (𝑥𝐴 𝐵 = 𝑦𝐵 𝑦)
41, 3mprg 2587 . 2 X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦
5 ixpiinm 6871 . 2 (∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝑦 = 𝑦𝐵 X𝑥𝐴 𝑦)
64, 5eqtrid 2274 1 (∃𝑧 𝑧𝐵X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wex 1538  wcel 2200   cint 3923   ciin 3966  Xcixp 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iin 3968  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ixp 6846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator