ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiin3 GIF version

Theorem dfiin3 4957
Description: Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfiun3.1 𝐵 ∈ V
Assertion
Ref Expression
dfiin3 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)

Proof of Theorem dfiin3
StepHypRef Expression
1 dfiin3g 4955 . 2 (∀𝑥𝐴 𝐵 ∈ V → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
2 dfiun3.1 . . 3 𝐵 ∈ V
32a1i 9 . 2 (𝑥𝐴𝐵 ∈ V)
41, 3mprg 2565 1 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  Vcvv 2776   cint 3899   ciin 3942  cmpt 4121  ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-int 3900  df-iin 3944  df-br 4060  df-opab 4122  df-mpt 4123  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator