ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfom GIF version

Theorem ctinfom 12670
Description: A condition for a set being countably infinite. Restates ennnfone 12667 in terms of ω and function image. Like ennnfone 12667 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinfom (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑥,𝐴,𝑦   𝑓,𝑘,𝑛
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem ctinfom
Dummy variables 𝑎 𝑑 𝑖 𝑚 𝑔 𝑏 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfone 12667 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖))))
21simplbi 274 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3 nnenom 10543 . . . . . . 7 ℕ ≈ ω
4 entr 6852 . . . . . . 7 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
53, 4mpan2 425 . . . . . 6 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
65ensymd 6851 . . . . 5 (𝐴 ≈ ℕ → ω ≈ 𝐴)
7 bren 6815 . . . . 5 (ω ≈ 𝐴 ↔ ∃𝑓 𝑓:ω–1-1-onto𝐴)
86, 7sylib 122 . . . 4 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–1-1-onto𝐴)
9 f1ofo 5514 . . . . . . . 8 (𝑓:ω–1-1-onto𝐴𝑓:ω–onto𝐴)
109adantl 277 . . . . . . 7 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → 𝑓:ω–onto𝐴)
11 simpr 110 . . . . . . . . 9 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
12 nnord 4649 . . . . . . . . . . . 12 (𝑛 ∈ ω → Ord 𝑛)
1312adantl 277 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → Ord 𝑛)
14 ordirr 4579 . . . . . . . . . . 11 (Ord 𝑛 → ¬ 𝑛𝑛)
1513, 14syl 14 . . . . . . . . . 10 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ¬ 𝑛𝑛)
16 f1of1 5506 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto𝐴𝑓:ω–1-1𝐴)
1716ad2antlr 489 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–1-1𝐴)
18 omelon 4646 . . . . . . . . . . . . 13 ω ∈ On
1918onelssi 4465 . . . . . . . . . . . 12 (𝑛 ∈ ω → 𝑛 ⊆ ω)
2019adantl 277 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
21 f1elima 5823 . . . . . . . . . . 11 ((𝑓:ω–1-1𝐴𝑛 ∈ ω ∧ 𝑛 ⊆ ω) → ((𝑓𝑛) ∈ (𝑓𝑛) ↔ 𝑛𝑛))
2217, 11, 20, 21syl3anc 1249 . . . . . . . . . 10 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ((𝑓𝑛) ∈ (𝑓𝑛) ↔ 𝑛𝑛))
2315, 22mtbird 674 . . . . . . . . 9 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ¬ (𝑓𝑛) ∈ (𝑓𝑛))
24 fveq2 5561 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑓𝑘) = (𝑓𝑛))
2524eleq1d 2265 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑓𝑘) ∈ (𝑓𝑛) ↔ (𝑓𝑛) ∈ (𝑓𝑛)))
2625notbid 668 . . . . . . . . . 10 (𝑘 = 𝑛 → (¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑛) ∈ (𝑓𝑛)))
2726rspcev 2868 . . . . . . . . 9 ((𝑛 ∈ ω ∧ ¬ (𝑓𝑛) ∈ (𝑓𝑛)) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
2811, 23, 27syl2anc 411 . . . . . . . 8 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
2928ralrimiva 2570 . . . . . . 7 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
3010, 29jca 306 . . . . . 6 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
3130ex 115 . . . . 5 (𝐴 ≈ ℕ → (𝑓:ω–1-1-onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
3231eximdv 1894 . . . 4 (𝐴 ≈ ℕ → (∃𝑓 𝑓:ω–1-1-onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
338, 32mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
342, 33jca 306 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
35 oveq1 5932 . . . . . . . . 9 (𝑏 = 𝑎 → (𝑏 + 1) = (𝑎 + 1))
3635cbvmptv 4130 . . . . . . . 8 (𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1))
37 freceq1 6459 . . . . . . . 8 ((𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0))
3836, 37ax-mp 5 . . . . . . 7 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)
39 eqid 2196 . . . . . . 7 (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))
40 simpl 109 . . . . . . 7 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
41 fveq2 5561 . . . . . . . . . . . . 13 (𝑘 = 𝑑 → (𝑓𝑘) = (𝑓𝑑))
4241eleq1d 2265 . . . . . . . . . . . 12 (𝑘 = 𝑑 → ((𝑓𝑘) ∈ (𝑓𝑛) ↔ (𝑓𝑑) ∈ (𝑓𝑛)))
4342notbid 668 . . . . . . . . . . 11 (𝑘 = 𝑑 → (¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑑) ∈ (𝑓𝑛)))
4443cbvrexv 2730 . . . . . . . . . 10 (∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛))
4544ralbii 2503 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛))
46 imaeq2 5006 . . . . . . . . . . . . 13 (𝑛 = 𝑐 → (𝑓𝑛) = (𝑓𝑐))
4746eleq2d 2266 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ((𝑓𝑑) ∈ (𝑓𝑛) ↔ (𝑓𝑑) ∈ (𝑓𝑐)))
4847notbid 668 . . . . . . . . . . 11 (𝑛 = 𝑐 → (¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑑) ∈ (𝑓𝑐)))
4948rexbidv 2498 . . . . . . . . . 10 (𝑛 = 𝑐 → (∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐)))
5049cbvralv 2729 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5145, 50sylbb 123 . . . . . . . 8 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5251adantl 277 . . . . . . 7 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5338, 39, 40, 52ctinfomlemom 12669 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
54 vex 2766 . . . . . . . 8 𝑓 ∈ V
55 frecex 6461 . . . . . . . . 9 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V
5655cnvex 5209 . . . . . . . 8 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V
5754, 56coex 5216 . . . . . . 7 (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) ∈ V
58 foeq1 5479 . . . . . . . 8 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔:ℕ0onto𝐴 ↔ (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴))
59 fveq1 5560 . . . . . . . . . . . 12 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔𝑗) = ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗))
60 fveq1 5560 . . . . . . . . . . . 12 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔𝑖) = ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))
6159, 60neeq12d 2387 . . . . . . . . . . 11 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔𝑗) ≠ (𝑔𝑖) ↔ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6261ralbidv 2497 . . . . . . . . . 10 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∀𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6362rexbidv 2498 . . . . . . . . 9 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6463ralbidv 2497 . . . . . . . 8 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6558, 64anbi12d 473 . . . . . . 7 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)) ↔ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))))
6657, 65spcev 2859 . . . . . 6 (((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6753, 66syl 14 . . . . 5 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6867exlimiv 1612 . . . 4 (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6968anim2i 342 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖))))
7069, 1sylibr 134 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))) → 𝐴 ≈ ℕ)
7134, 70impbii 126 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  wrex 2476  wss 3157   class class class wbr 4034  cmpt 4095  Ord word 4398  ωcom 4627  ccnv 4663  cima 4667  ccom 4668  1-1wf1 5256  ontowfo 5257  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  freccfrec 6457  cen 6806  0cc0 7896  1c1 7897   + caddc 7899  cn 9007  0cn0 9266  cz 9343  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-er 6601  df-pm 6719  df-en 6809  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557
This theorem is referenced by:  ctinf  12672
  Copyright terms: Public domain W3C validator