ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfom GIF version

Theorem ctinfom 12994
Description: A condition for a set being countably infinite. Restates ennnfone 12991 in terms of ω and function image. Like ennnfone 12991 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinfom (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑥,𝐴,𝑦   𝑓,𝑘,𝑛
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem ctinfom
Dummy variables 𝑎 𝑑 𝑖 𝑚 𝑔 𝑏 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfone 12991 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖))))
21simplbi 274 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3 nnenom 10651 . . . . . . 7 ℕ ≈ ω
4 entr 6934 . . . . . . 7 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
53, 4mpan2 425 . . . . . 6 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
65ensymd 6933 . . . . 5 (𝐴 ≈ ℕ → ω ≈ 𝐴)
7 bren 6893 . . . . 5 (ω ≈ 𝐴 ↔ ∃𝑓 𝑓:ω–1-1-onto𝐴)
86, 7sylib 122 . . . 4 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–1-1-onto𝐴)
9 f1ofo 5578 . . . . . . . 8 (𝑓:ω–1-1-onto𝐴𝑓:ω–onto𝐴)
109adantl 277 . . . . . . 7 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → 𝑓:ω–onto𝐴)
11 simpr 110 . . . . . . . . 9 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
12 nnord 4703 . . . . . . . . . . . 12 (𝑛 ∈ ω → Ord 𝑛)
1312adantl 277 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → Ord 𝑛)
14 ordirr 4633 . . . . . . . . . . 11 (Ord 𝑛 → ¬ 𝑛𝑛)
1513, 14syl 14 . . . . . . . . . 10 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ¬ 𝑛𝑛)
16 f1of1 5570 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto𝐴𝑓:ω–1-1𝐴)
1716ad2antlr 489 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–1-1𝐴)
18 omelon 4700 . . . . . . . . . . . . 13 ω ∈ On
1918onelssi 4519 . . . . . . . . . . . 12 (𝑛 ∈ ω → 𝑛 ⊆ ω)
2019adantl 277 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
21 f1elima 5896 . . . . . . . . . . 11 ((𝑓:ω–1-1𝐴𝑛 ∈ ω ∧ 𝑛 ⊆ ω) → ((𝑓𝑛) ∈ (𝑓𝑛) ↔ 𝑛𝑛))
2217, 11, 20, 21syl3anc 1271 . . . . . . . . . 10 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ((𝑓𝑛) ∈ (𝑓𝑛) ↔ 𝑛𝑛))
2315, 22mtbird 677 . . . . . . . . 9 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ¬ (𝑓𝑛) ∈ (𝑓𝑛))
24 fveq2 5626 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑓𝑘) = (𝑓𝑛))
2524eleq1d 2298 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑓𝑘) ∈ (𝑓𝑛) ↔ (𝑓𝑛) ∈ (𝑓𝑛)))
2625notbid 671 . . . . . . . . . 10 (𝑘 = 𝑛 → (¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑛) ∈ (𝑓𝑛)))
2726rspcev 2907 . . . . . . . . 9 ((𝑛 ∈ ω ∧ ¬ (𝑓𝑛) ∈ (𝑓𝑛)) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
2811, 23, 27syl2anc 411 . . . . . . . 8 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
2928ralrimiva 2603 . . . . . . 7 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
3010, 29jca 306 . . . . . 6 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
3130ex 115 . . . . 5 (𝐴 ≈ ℕ → (𝑓:ω–1-1-onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
3231eximdv 1926 . . . 4 (𝐴 ≈ ℕ → (∃𝑓 𝑓:ω–1-1-onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
338, 32mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
342, 33jca 306 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
35 oveq1 6007 . . . . . . . . 9 (𝑏 = 𝑎 → (𝑏 + 1) = (𝑎 + 1))
3635cbvmptv 4179 . . . . . . . 8 (𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1))
37 freceq1 6536 . . . . . . . 8 ((𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0))
3836, 37ax-mp 5 . . . . . . 7 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)
39 eqid 2229 . . . . . . 7 (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))
40 simpl 109 . . . . . . 7 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
41 fveq2 5626 . . . . . . . . . . . . 13 (𝑘 = 𝑑 → (𝑓𝑘) = (𝑓𝑑))
4241eleq1d 2298 . . . . . . . . . . . 12 (𝑘 = 𝑑 → ((𝑓𝑘) ∈ (𝑓𝑛) ↔ (𝑓𝑑) ∈ (𝑓𝑛)))
4342notbid 671 . . . . . . . . . . 11 (𝑘 = 𝑑 → (¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑑) ∈ (𝑓𝑛)))
4443cbvrexv 2766 . . . . . . . . . 10 (∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛))
4544ralbii 2536 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛))
46 imaeq2 5063 . . . . . . . . . . . . 13 (𝑛 = 𝑐 → (𝑓𝑛) = (𝑓𝑐))
4746eleq2d 2299 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ((𝑓𝑑) ∈ (𝑓𝑛) ↔ (𝑓𝑑) ∈ (𝑓𝑐)))
4847notbid 671 . . . . . . . . . . 11 (𝑛 = 𝑐 → (¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑑) ∈ (𝑓𝑐)))
4948rexbidv 2531 . . . . . . . . . 10 (𝑛 = 𝑐 → (∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐)))
5049cbvralv 2765 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5145, 50sylbb 123 . . . . . . . 8 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5251adantl 277 . . . . . . 7 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5338, 39, 40, 52ctinfomlemom 12993 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
54 vex 2802 . . . . . . . 8 𝑓 ∈ V
55 frecex 6538 . . . . . . . . 9 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V
5655cnvex 5266 . . . . . . . 8 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V
5754, 56coex 5273 . . . . . . 7 (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) ∈ V
58 foeq1 5543 . . . . . . . 8 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔:ℕ0onto𝐴 ↔ (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴))
59 fveq1 5625 . . . . . . . . . . . 12 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔𝑗) = ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗))
60 fveq1 5625 . . . . . . . . . . . 12 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔𝑖) = ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))
6159, 60neeq12d 2420 . . . . . . . . . . 11 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔𝑗) ≠ (𝑔𝑖) ↔ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6261ralbidv 2530 . . . . . . . . . 10 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∀𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6362rexbidv 2531 . . . . . . . . 9 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6463ralbidv 2530 . . . . . . . 8 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6558, 64anbi12d 473 . . . . . . 7 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)) ↔ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))))
6657, 65spcev 2898 . . . . . 6 (((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6753, 66syl 14 . . . . 5 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6867exlimiv 1644 . . . 4 (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6968anim2i 342 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖))))
7069, 1sylibr 134 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))) → 𝐴 ≈ ℕ)
7134, 70impbii 126 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  DECID wdc 839   = wceq 1395  wex 1538  wcel 2200  wne 2400  wral 2508  wrex 2509  wss 3197   class class class wbr 4082  cmpt 4144  Ord word 4452  ωcom 4681  ccnv 4717  cima 4721  ccom 4722  1-1wf1 5314  ontowfo 5315  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  freccfrec 6534  cen 6883  0cc0 7995  1c1 7996   + caddc 7998  cn 9106  0cn0 9365  cz 9442  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-er 6678  df-pm 6796  df-en 6886  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665
This theorem is referenced by:  ctinf  12996
  Copyright terms: Public domain W3C validator