ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfom GIF version

Theorem ctinfom 12370
Description: A condition for a set being countably infinite. Restates ennnfone 12367 in terms of ω and function image. Like ennnfone 12367 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinfom (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑥,𝐴,𝑦   𝑓,𝑘,𝑛
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem ctinfom
Dummy variables 𝑎 𝑑 𝑖 𝑚 𝑔 𝑏 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfone 12367 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖))))
21simplbi 272 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3 nnenom 10377 . . . . . . 7 ℕ ≈ ω
4 entr 6758 . . . . . . 7 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
53, 4mpan2 423 . . . . . 6 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
65ensymd 6757 . . . . 5 (𝐴 ≈ ℕ → ω ≈ 𝐴)
7 bren 6721 . . . . 5 (ω ≈ 𝐴 ↔ ∃𝑓 𝑓:ω–1-1-onto𝐴)
86, 7sylib 121 . . . 4 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–1-1-onto𝐴)
9 f1ofo 5447 . . . . . . . 8 (𝑓:ω–1-1-onto𝐴𝑓:ω–onto𝐴)
109adantl 275 . . . . . . 7 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → 𝑓:ω–onto𝐴)
11 simpr 109 . . . . . . . . 9 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
12 nnord 4594 . . . . . . . . . . . 12 (𝑛 ∈ ω → Ord 𝑛)
1312adantl 275 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → Ord 𝑛)
14 ordirr 4524 . . . . . . . . . . 11 (Ord 𝑛 → ¬ 𝑛𝑛)
1513, 14syl 14 . . . . . . . . . 10 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ¬ 𝑛𝑛)
16 f1of1 5439 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto𝐴𝑓:ω–1-1𝐴)
1716ad2antlr 486 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–1-1𝐴)
18 omelon 4591 . . . . . . . . . . . . 13 ω ∈ On
1918onelssi 4412 . . . . . . . . . . . 12 (𝑛 ∈ ω → 𝑛 ⊆ ω)
2019adantl 275 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
21 f1elima 5749 . . . . . . . . . . 11 ((𝑓:ω–1-1𝐴𝑛 ∈ ω ∧ 𝑛 ⊆ ω) → ((𝑓𝑛) ∈ (𝑓𝑛) ↔ 𝑛𝑛))
2217, 11, 20, 21syl3anc 1233 . . . . . . . . . 10 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ((𝑓𝑛) ∈ (𝑓𝑛) ↔ 𝑛𝑛))
2315, 22mtbird 668 . . . . . . . . 9 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ¬ (𝑓𝑛) ∈ (𝑓𝑛))
24 fveq2 5494 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑓𝑘) = (𝑓𝑛))
2524eleq1d 2239 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑓𝑘) ∈ (𝑓𝑛) ↔ (𝑓𝑛) ∈ (𝑓𝑛)))
2625notbid 662 . . . . . . . . . 10 (𝑘 = 𝑛 → (¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑛) ∈ (𝑓𝑛)))
2726rspcev 2834 . . . . . . . . 9 ((𝑛 ∈ ω ∧ ¬ (𝑓𝑛) ∈ (𝑓𝑛)) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
2811, 23, 27syl2anc 409 . . . . . . . 8 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
2928ralrimiva 2543 . . . . . . 7 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
3010, 29jca 304 . . . . . 6 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
3130ex 114 . . . . 5 (𝐴 ≈ ℕ → (𝑓:ω–1-1-onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
3231eximdv 1873 . . . 4 (𝐴 ≈ ℕ → (∃𝑓 𝑓:ω–1-1-onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
338, 32mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
342, 33jca 304 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
35 oveq1 5857 . . . . . . . . 9 (𝑏 = 𝑎 → (𝑏 + 1) = (𝑎 + 1))
3635cbvmptv 4083 . . . . . . . 8 (𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1))
37 freceq1 6368 . . . . . . . 8 ((𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0))
3836, 37ax-mp 5 . . . . . . 7 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)
39 eqid 2170 . . . . . . 7 (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))
40 simpl 108 . . . . . . 7 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
41 fveq2 5494 . . . . . . . . . . . . 13 (𝑘 = 𝑑 → (𝑓𝑘) = (𝑓𝑑))
4241eleq1d 2239 . . . . . . . . . . . 12 (𝑘 = 𝑑 → ((𝑓𝑘) ∈ (𝑓𝑛) ↔ (𝑓𝑑) ∈ (𝑓𝑛)))
4342notbid 662 . . . . . . . . . . 11 (𝑘 = 𝑑 → (¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑑) ∈ (𝑓𝑛)))
4443cbvrexv 2697 . . . . . . . . . 10 (∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛))
4544ralbii 2476 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛))
46 imaeq2 4947 . . . . . . . . . . . . 13 (𝑛 = 𝑐 → (𝑓𝑛) = (𝑓𝑐))
4746eleq2d 2240 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ((𝑓𝑑) ∈ (𝑓𝑛) ↔ (𝑓𝑑) ∈ (𝑓𝑐)))
4847notbid 662 . . . . . . . . . . 11 (𝑛 = 𝑐 → (¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑑) ∈ (𝑓𝑐)))
4948rexbidv 2471 . . . . . . . . . 10 (𝑛 = 𝑐 → (∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐)))
5049cbvralv 2696 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5145, 50sylbb 122 . . . . . . . 8 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5251adantl 275 . . . . . . 7 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5338, 39, 40, 52ctinfomlemom 12369 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
54 vex 2733 . . . . . . . 8 𝑓 ∈ V
55 frecex 6370 . . . . . . . . 9 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V
5655cnvex 5147 . . . . . . . 8 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V
5754, 56coex 5154 . . . . . . 7 (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) ∈ V
58 foeq1 5414 . . . . . . . 8 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔:ℕ0onto𝐴 ↔ (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴))
59 fveq1 5493 . . . . . . . . . . . 12 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔𝑗) = ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗))
60 fveq1 5493 . . . . . . . . . . . 12 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔𝑖) = ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))
6159, 60neeq12d 2360 . . . . . . . . . . 11 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔𝑗) ≠ (𝑔𝑖) ↔ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6261ralbidv 2470 . . . . . . . . . 10 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∀𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6362rexbidv 2471 . . . . . . . . 9 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6463ralbidv 2470 . . . . . . . 8 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6558, 64anbi12d 470 . . . . . . 7 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)) ↔ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))))
6657, 65spcev 2825 . . . . . 6 (((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6753, 66syl 14 . . . . 5 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6867exlimiv 1591 . . . 4 (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6968anim2i 340 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖))))
7069, 1sylibr 133 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))) → 𝐴 ≈ ℕ)
7134, 70impbii 125 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  DECID wdc 829   = wceq 1348  wex 1485  wcel 2141  wne 2340  wral 2448  wrex 2449  wss 3121   class class class wbr 3987  cmpt 4048  Ord word 4345  ωcom 4572  ccnv 4608  cima 4612  ccom 4613  1-1wf1 5193  ontowfo 5194  1-1-ontowf1o 5195  cfv 5196  (class class class)co 5850  freccfrec 6366  cen 6712  0cc0 7761  1c1 7762   + caddc 7764  cn 8865  0cn0 9122  cz 9199  ...cfz 9952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-er 6509  df-pm 6625  df-en 6715  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-fz 9953  df-seqfrec 10389
This theorem is referenced by:  ctinf  12372
  Copyright terms: Public domain W3C validator