| Step | Hyp | Ref
| Expression |
| 1 | | ennnfone 12642 |
. . . 4
⊢ (𝐴 ≈ ℕ ↔
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖)))) |
| 2 | 1 | simplbi 274 |
. . 3
⊢ (𝐴 ≈ ℕ →
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 3 | | nnenom 10526 |
. . . . . . 7
⊢ ℕ
≈ ω |
| 4 | | entr 6843 |
. . . . . . 7
⊢ ((𝐴 ≈ ℕ ∧ ℕ
≈ ω) → 𝐴
≈ ω) |
| 5 | 3, 4 | mpan2 425 |
. . . . . 6
⊢ (𝐴 ≈ ℕ → 𝐴 ≈
ω) |
| 6 | 5 | ensymd 6842 |
. . . . 5
⊢ (𝐴 ≈ ℕ → ω
≈ 𝐴) |
| 7 | | bren 6806 |
. . . . 5
⊢ (ω
≈ 𝐴 ↔
∃𝑓 𝑓:ω–1-1-onto→𝐴) |
| 8 | 6, 7 | sylib 122 |
. . . 4
⊢ (𝐴 ≈ ℕ →
∃𝑓 𝑓:ω–1-1-onto→𝐴) |
| 9 | | f1ofo 5511 |
. . . . . . . 8
⊢ (𝑓:ω–1-1-onto→𝐴 → 𝑓:ω–onto→𝐴) |
| 10 | 9 | adantl 277 |
. . . . . . 7
⊢ ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) → 𝑓:ω–onto→𝐴) |
| 11 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) |
| 12 | | nnord 4648 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → Ord 𝑛) |
| 13 | 12 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) ∧ 𝑛 ∈ ω) → Ord 𝑛) |
| 14 | | ordirr 4578 |
. . . . . . . . . . 11
⊢ (Ord
𝑛 → ¬ 𝑛 ∈ 𝑛) |
| 15 | 13, 14 | syl 14 |
. . . . . . . . . 10
⊢ (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) ∧ 𝑛 ∈ ω) → ¬ 𝑛 ∈ 𝑛) |
| 16 | | f1of1 5503 |
. . . . . . . . . . . 12
⊢ (𝑓:ω–1-1-onto→𝐴 → 𝑓:ω–1-1→𝐴) |
| 17 | 16 | ad2antlr 489 |
. . . . . . . . . . 11
⊢ (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–1-1→𝐴) |
| 18 | | omelon 4645 |
. . . . . . . . . . . . 13
⊢ ω
∈ On |
| 19 | 18 | onelssi 4464 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → 𝑛 ⊆
ω) |
| 20 | 19 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) |
| 21 | | f1elima 5820 |
. . . . . . . . . . 11
⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝑛 ∈ ω ∧ 𝑛 ⊆ ω) → ((𝑓‘𝑛) ∈ (𝑓 “ 𝑛) ↔ 𝑛 ∈ 𝑛)) |
| 22 | 17, 11, 20, 21 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) ∧ 𝑛 ∈ ω) → ((𝑓‘𝑛) ∈ (𝑓 “ 𝑛) ↔ 𝑛 ∈ 𝑛)) |
| 23 | 15, 22 | mtbird 674 |
. . . . . . . . 9
⊢ (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) ∧ 𝑛 ∈ ω) → ¬ (𝑓‘𝑛) ∈ (𝑓 “ 𝑛)) |
| 24 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝑓‘𝑘) = (𝑓‘𝑛)) |
| 25 | 24 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → ((𝑓‘𝑘) ∈ (𝑓 “ 𝑛) ↔ (𝑓‘𝑛) ∈ (𝑓 “ 𝑛))) |
| 26 | 25 | notbid 668 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛) ↔ ¬ (𝑓‘𝑛) ∈ (𝑓 “ 𝑛))) |
| 27 | 26 | rspcev 2868 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ ¬
(𝑓‘𝑛) ∈ (𝑓 “ 𝑛)) → ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
| 28 | 11, 23, 27 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
| 29 | 28 | ralrimiva 2570 |
. . . . . . 7
⊢ ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
| 30 | 10, 29 | jca 306 |
. . . . . 6
⊢ ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto→𝐴) → (𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
| 31 | 30 | ex 115 |
. . . . 5
⊢ (𝐴 ≈ ℕ → (𝑓:ω–1-1-onto→𝐴 → (𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
| 32 | 31 | eximdv 1894 |
. . . 4
⊢ (𝐴 ≈ ℕ →
(∃𝑓 𝑓:ω–1-1-onto→𝐴 → ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
| 33 | 8, 32 | mpd 13 |
. . 3
⊢ (𝐴 ≈ ℕ →
∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
| 34 | 2, 33 | jca 306 |
. 2
⊢ (𝐴 ≈ ℕ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
| 35 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑏 = 𝑎 → (𝑏 + 1) = (𝑎 + 1)) |
| 36 | 35 | cbvmptv 4129 |
. . . . . . . 8
⊢ (𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) |
| 37 | | freceq1 6450 |
. . . . . . . 8
⊢ ((𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . 7
⊢
frec((𝑏 ∈
ℤ ↦ (𝑏 + 1)),
0) = frec((𝑎 ∈ ℤ
↦ (𝑎 + 1)),
0) |
| 39 | | eqid 2196 |
. . . . . . 7
⊢ (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) |
| 40 | | simpl 109 |
. . . . . . 7
⊢ ((𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → 𝑓:ω–onto→𝐴) |
| 41 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑑 → (𝑓‘𝑘) = (𝑓‘𝑑)) |
| 42 | 41 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑑 → ((𝑓‘𝑘) ∈ (𝑓 “ 𝑛) ↔ (𝑓‘𝑑) ∈ (𝑓 “ 𝑛))) |
| 43 | 42 | notbid 668 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑑 → (¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛) ↔ ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑛))) |
| 44 | 43 | cbvrexv 2730 |
. . . . . . . . . 10
⊢
(∃𝑘 ∈
ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑛)) |
| 45 | 44 | ralbii 2503 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ∃𝑘 ∈
ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛) ↔ ∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑛)) |
| 46 | | imaeq2 5005 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑐 → (𝑓 “ 𝑛) = (𝑓 “ 𝑐)) |
| 47 | 46 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑐 → ((𝑓‘𝑑) ∈ (𝑓 “ 𝑛) ↔ (𝑓‘𝑑) ∈ (𝑓 “ 𝑐))) |
| 48 | 47 | notbid 668 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑐 → (¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑛) ↔ ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑐))) |
| 49 | 48 | rexbidv 2498 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑐 → (∃𝑑 ∈ ω ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑐))) |
| 50 | 49 | cbvralv 2729 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ∃𝑑 ∈
ω ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑛) ↔ ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑐)) |
| 51 | 45, 50 | sylbb 123 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ω ∃𝑘 ∈
ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑐)) |
| 52 | 51 | adantl 277 |
. . . . . . 7
⊢ ((𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓‘𝑑) ∈ (𝑓 “ 𝑐)) |
| 53 | 38, 39, 40, 52 | ctinfomlemom 12644 |
. . . . . 6
⊢ ((𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))) |
| 54 | | vex 2766 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 55 | | frecex 6452 |
. . . . . . . . 9
⊢
frec((𝑏 ∈
ℤ ↦ (𝑏 + 1)),
0) ∈ V |
| 56 | 55 | cnvex 5208 |
. . . . . . . 8
⊢ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V |
| 57 | 54, 56 | coex 5215 |
. . . . . . 7
⊢ (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) ∈ V |
| 58 | | foeq1 5476 |
. . . . . . . 8
⊢ (𝑔 = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔:ℕ0–onto→𝐴 ↔ (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0–onto→𝐴)) |
| 59 | | fveq1 5557 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔‘𝑗) = ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗)) |
| 60 | | fveq1 5557 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔‘𝑖) = ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)) |
| 61 | 59, 60 | neeq12d 2387 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔‘𝑗) ≠ (𝑔‘𝑖) ↔ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))) |
| 62 | 61 | ralbidv 2497 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖) ↔ ∀𝑖 ∈ (0...𝑚)((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))) |
| 63 | 62 | rexbidv 2498 |
. . . . . . . . 9
⊢ (𝑔 = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∃𝑗 ∈ ℕ0 ∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖) ↔ ∃𝑗 ∈ ℕ0 ∀𝑖 ∈ (0...𝑚)((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))) |
| 64 | 63 | ralbidv 2497 |
. . . . . . . 8
⊢ (𝑔 = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑚 ∈ ℕ0
∃𝑗 ∈
ℕ0 ∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖) ↔ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))) |
| 65 | 58, 64 | anbi12d 473 |
. . . . . . 7
⊢ (𝑔 = (𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖)) ↔ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))) |
| 66 | 57, 65 | spcev 2859 |
. . . . . 6
⊢ (((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓 ∘ ◡frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)) → ∃𝑔(𝑔:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖))) |
| 67 | 53, 66 | syl 14 |
. . . . 5
⊢ ((𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → ∃𝑔(𝑔:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖))) |
| 68 | 67 | exlimiv 1612 |
. . . 4
⊢
(∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → ∃𝑔(𝑔:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖))) |
| 69 | 68 | anim2i 342 |
. . 3
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)(𝑔‘𝑗) ≠ (𝑔‘𝑖)))) |
| 70 | 69, 1 | sylibr 134 |
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) → 𝐴 ≈ ℕ) |
| 71 | 34, 70 | impbii 126 |
1
⊢ (𝐴 ≈ ℕ ↔
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |