ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfom GIF version

Theorem ctinfom 11941
Description: A condition for a set being countably infinite. Restates ennnfone 11938 in terms of ω and function image. Like ennnfone 11938 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinfom (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑥,𝐴,𝑦   𝑓,𝑘,𝑛
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem ctinfom
Dummy variables 𝑎 𝑑 𝑖 𝑚 𝑔 𝑏 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfone 11938 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖))))
21simplbi 272 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3 nnenom 10207 . . . . . . 7 ℕ ≈ ω
4 entr 6678 . . . . . . 7 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
53, 4mpan2 421 . . . . . 6 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
65ensymd 6677 . . . . 5 (𝐴 ≈ ℕ → ω ≈ 𝐴)
7 bren 6641 . . . . 5 (ω ≈ 𝐴 ↔ ∃𝑓 𝑓:ω–1-1-onto𝐴)
86, 7sylib 121 . . . 4 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–1-1-onto𝐴)
9 f1ofo 5374 . . . . . . . 8 (𝑓:ω–1-1-onto𝐴𝑓:ω–onto𝐴)
109adantl 275 . . . . . . 7 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → 𝑓:ω–onto𝐴)
11 simpr 109 . . . . . . . . 9 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
12 nnord 4525 . . . . . . . . . . . 12 (𝑛 ∈ ω → Ord 𝑛)
1312adantl 275 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → Ord 𝑛)
14 ordirr 4457 . . . . . . . . . . 11 (Ord 𝑛 → ¬ 𝑛𝑛)
1513, 14syl 14 . . . . . . . . . 10 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ¬ 𝑛𝑛)
16 f1of1 5366 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto𝐴𝑓:ω–1-1𝐴)
1716ad2antlr 480 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–1-1𝐴)
18 omelon 4522 . . . . . . . . . . . . 13 ω ∈ On
1918onelssi 4351 . . . . . . . . . . . 12 (𝑛 ∈ ω → 𝑛 ⊆ ω)
2019adantl 275 . . . . . . . . . . 11 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
21 f1elima 5674 . . . . . . . . . . 11 ((𝑓:ω–1-1𝐴𝑛 ∈ ω ∧ 𝑛 ⊆ ω) → ((𝑓𝑛) ∈ (𝑓𝑛) ↔ 𝑛𝑛))
2217, 11, 20, 21syl3anc 1216 . . . . . . . . . 10 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ((𝑓𝑛) ∈ (𝑓𝑛) ↔ 𝑛𝑛))
2315, 22mtbird 662 . . . . . . . . 9 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ¬ (𝑓𝑛) ∈ (𝑓𝑛))
24 fveq2 5421 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑓𝑘) = (𝑓𝑛))
2524eleq1d 2208 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑓𝑘) ∈ (𝑓𝑛) ↔ (𝑓𝑛) ∈ (𝑓𝑛)))
2625notbid 656 . . . . . . . . . 10 (𝑘 = 𝑛 → (¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑛) ∈ (𝑓𝑛)))
2726rspcev 2789 . . . . . . . . 9 ((𝑛 ∈ ω ∧ ¬ (𝑓𝑛) ∈ (𝑓𝑛)) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
2811, 23, 27syl2anc 408 . . . . . . . 8 (((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
2928ralrimiva 2505 . . . . . . 7 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
3010, 29jca 304 . . . . . 6 ((𝐴 ≈ ℕ ∧ 𝑓:ω–1-1-onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
3130ex 114 . . . . 5 (𝐴 ≈ ℕ → (𝑓:ω–1-1-onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
3231eximdv 1852 . . . 4 (𝐴 ≈ ℕ → (∃𝑓 𝑓:ω–1-1-onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
338, 32mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
342, 33jca 304 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
35 oveq1 5781 . . . . . . . . 9 (𝑏 = 𝑎 → (𝑏 + 1) = (𝑎 + 1))
3635cbvmptv 4024 . . . . . . . 8 (𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1))
37 freceq1 6289 . . . . . . . 8 ((𝑏 ∈ ℤ ↦ (𝑏 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0))
3836, 37ax-mp 5 . . . . . . 7 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)
39 eqid 2139 . . . . . . 7 (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))
40 simpl 108 . . . . . . 7 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
41 fveq2 5421 . . . . . . . . . . . . 13 (𝑘 = 𝑑 → (𝑓𝑘) = (𝑓𝑑))
4241eleq1d 2208 . . . . . . . . . . . 12 (𝑘 = 𝑑 → ((𝑓𝑘) ∈ (𝑓𝑛) ↔ (𝑓𝑑) ∈ (𝑓𝑛)))
4342notbid 656 . . . . . . . . . . 11 (𝑘 = 𝑑 → (¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑑) ∈ (𝑓𝑛)))
4443cbvrexv 2655 . . . . . . . . . 10 (∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛))
4544ralbii 2441 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) ↔ ∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛))
46 imaeq2 4877 . . . . . . . . . . . . 13 (𝑛 = 𝑐 → (𝑓𝑛) = (𝑓𝑐))
4746eleq2d 2209 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ((𝑓𝑑) ∈ (𝑓𝑛) ↔ (𝑓𝑑) ∈ (𝑓𝑐)))
4847notbid 656 . . . . . . . . . . 11 (𝑛 = 𝑐 → (¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ¬ (𝑓𝑑) ∈ (𝑓𝑐)))
4948rexbidv 2438 . . . . . . . . . 10 (𝑛 = 𝑐 → (∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐)))
5049cbvralv 2654 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑛) ↔ ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5145, 50sylbb 122 . . . . . . . 8 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5251adantl 275 . . . . . . 7 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∀𝑐 ∈ ω ∃𝑑 ∈ ω ¬ (𝑓𝑑) ∈ (𝑓𝑐))
5338, 39, 40, 52ctinfomlemom 11940 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
54 vex 2689 . . . . . . . 8 𝑓 ∈ V
55 frecex 6291 . . . . . . . . 9 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V
5655cnvex 5077 . . . . . . . 8 frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0) ∈ V
5754, 56coex 5084 . . . . . . 7 (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) ∈ V
58 foeq1 5341 . . . . . . . 8 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔:ℕ0onto𝐴 ↔ (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴))
59 fveq1 5420 . . . . . . . . . . . 12 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔𝑗) = ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗))
60 fveq1 5420 . . . . . . . . . . . 12 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (𝑔𝑖) = ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))
6159, 60neeq12d 2328 . . . . . . . . . . 11 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔𝑗) ≠ (𝑔𝑖) ↔ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6261ralbidv 2437 . . . . . . . . . 10 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∀𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6362rexbidv 2438 . . . . . . . . 9 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6463ralbidv 2437 . . . . . . . 8 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → (∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖) ↔ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)))
6558, 64anbi12d 464 . . . . . . 7 (𝑔 = (𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)) → ((𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)) ↔ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖))))
6657, 65spcev 2780 . . . . . 6 (((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0)):ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑗) ≠ ((𝑓frec((𝑏 ∈ ℤ ↦ (𝑏 + 1)), 0))‘𝑖)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6753, 66syl 14 . . . . 5 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6867exlimiv 1577 . . . 4 (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖)))
6968anim2i 339 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑔(𝑔:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝑔𝑗) ≠ (𝑔𝑖))))
7069, 1sylibr 133 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))) → 𝐴 ≈ ℕ)
7134, 70impbii 125 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  DECID wdc 819   = wceq 1331  wex 1468  wcel 1480  wne 2308  wral 2416  wrex 2417  wss 3071   class class class wbr 3929  cmpt 3989  Ord word 4284  ωcom 4504  ccnv 4538  cima 4542  ccom 4543  1-1wf1 5120  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  freccfrec 6287  cen 6632  0cc0 7620  1c1 7621   + caddc 7623  cn 8720  0cn0 8977  cz 9054  ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-er 6429  df-pm 6545  df-en 6635  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-seqfrec 10219
This theorem is referenced by:  ctinf  11943
  Copyright terms: Public domain W3C validator