ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemim GIF version

Theorem ennnfonelemim 12795
Description: Lemma for ennnfone 12796. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
Assertion
Ref Expression
ennnfonelemim (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
Distinct variable groups:   𝐴,𝑓,𝑗,𝑛   𝑥,𝐴,𝑦,𝑛   𝑓,𝑘,𝑗,𝑛   𝑦,𝑗
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem ennnfonelemim
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 nn0ennn 10578 . . . 4 0 ≈ ℕ
21ensymi 6874 . . 3 ℕ ≈ ℕ0
3 entr 6876 . . 3 ((𝐴 ≈ ℕ ∧ ℕ ≈ ℕ0) → 𝐴 ≈ ℕ0)
42, 3mpan2 425 . 2 (𝐴 ≈ ℕ → 𝐴 ≈ ℕ0)
5 bren 6835 . . . 4 (𝐴 ≈ ℕ0 ↔ ∃𝑔 𝑔:𝐴1-1-onto→ℕ0)
65biimpi 120 . . 3 (𝐴 ≈ ℕ0 → ∃𝑔 𝑔:𝐴1-1-onto→ℕ0)
7 f1of 5522 . . . . . . . . . . 11 (𝑔:𝐴1-1-onto→ℕ0𝑔:𝐴⟶ℕ0)
87adantr 276 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑔:𝐴⟶ℕ0)
9 simprl 529 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
108, 9ffvelcdmd 5716 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑥) ∈ ℕ0)
1110nn0zd 9493 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑥) ∈ ℤ)
12 simprr 531 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
138, 12ffvelcdmd 5716 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑦) ∈ ℕ0)
1413nn0zd 9493 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑦) ∈ ℤ)
15 zdceq 9448 . . . . . . . 8 (((𝑔𝑥) ∈ ℤ ∧ (𝑔𝑦) ∈ ℤ) → DECID (𝑔𝑥) = (𝑔𝑦))
1611, 14, 15syl2anc 411 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → DECID (𝑔𝑥) = (𝑔𝑦))
17 dff1o6 5845 . . . . . . . . . . . . 13 (𝑔:𝐴1-1-onto→ℕ0 ↔ (𝑔 Fn 𝐴 ∧ ran 𝑔 = ℕ0 ∧ ∀𝑥𝐴𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
1817simp3bi 1017 . . . . . . . . . . . 12 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥𝐴𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
1918r19.21bi 2594 . . . . . . . . . . 11 ((𝑔:𝐴1-1-onto→ℕ0𝑥𝐴) → ∀𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
2019r19.21bi 2594 . . . . . . . . . 10 (((𝑔:𝐴1-1-onto→ℕ0𝑥𝐴) ∧ 𝑦𝐴) → ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
2120anasss 399 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
22 fveq2 5576 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
2321, 22impbid1 142 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑔𝑥) = (𝑔𝑦) ↔ 𝑥 = 𝑦))
2423dcbid 840 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (DECID (𝑔𝑥) = (𝑔𝑦) ↔ DECID 𝑥 = 𝑦))
2516, 24mpbid 147 . . . . . 6 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → DECID 𝑥 = 𝑦)
2625ralrimivva 2588 . . . . 5 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
27 f1ocnv 5535 . . . . . . 7 (𝑔:𝐴1-1-onto→ℕ0𝑔:ℕ01-1-onto𝐴)
28 f1ofo 5529 . . . . . . 7 (𝑔:ℕ01-1-onto𝐴𝑔:ℕ0onto𝐴)
2927, 28syl 14 . . . . . 6 (𝑔:𝐴1-1-onto→ℕ0𝑔:ℕ0onto𝐴)
30 peano2nn0 9335 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3130adantl 277 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
32 elfznn0 10236 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑛) → 𝑗 ∈ ℕ0)
3332adantl 277 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ ℕ0)
3433nn0red 9349 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ ℝ)
35 elfzle2 10150 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑛) → 𝑗𝑛)
3635adantl 277 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗𝑛)
37 simplr 528 . . . . . . . . . . . . . . 15 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑛 ∈ ℕ0)
38 nn0leltp1 9436 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑗𝑛𝑗 < (𝑛 + 1)))
3933, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑗𝑛𝑗 < (𝑛 + 1)))
4036, 39mpbid 147 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 < (𝑛 + 1))
4134, 40gtned 8185 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑛 + 1) ≠ 𝑗)
4241neneqd 2397 . . . . . . . . . . 11 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ¬ (𝑛 + 1) = 𝑗)
43 dff1o6 5845 . . . . . . . . . . . . . . 15 (𝑔:ℕ01-1-onto𝐴 ↔ (𝑔 Fn ℕ0 ∧ ran 𝑔 = 𝐴 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
4427, 43sylib 122 . . . . . . . . . . . . . 14 (𝑔:𝐴1-1-onto→ℕ0 → (𝑔 Fn ℕ0 ∧ ran 𝑔 = 𝐴 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
4544simp3d 1014 . . . . . . . . . . . . 13 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
4645ad2antrr 488 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
4731adantr 276 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑛 + 1) ∈ ℕ0)
48 fveqeq2 5585 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → ((𝑔𝑥) = (𝑔𝑦) ↔ (𝑔‘(𝑛 + 1)) = (𝑔𝑦)))
49 eqeq1 2212 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → (𝑥 = 𝑦 ↔ (𝑛 + 1) = 𝑦))
5048, 49imbi12d 234 . . . . . . . . . . . . . 14 (𝑥 = (𝑛 + 1) → (((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) ↔ ((𝑔‘(𝑛 + 1)) = (𝑔𝑦) → (𝑛 + 1) = 𝑦)))
51 fveq2 5576 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑗 → (𝑔𝑦) = (𝑔𝑗))
5251eqeq2d 2217 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ((𝑔‘(𝑛 + 1)) = (𝑔𝑦) ↔ (𝑔‘(𝑛 + 1)) = (𝑔𝑗)))
53 eqeq2 2215 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ((𝑛 + 1) = 𝑦 ↔ (𝑛 + 1) = 𝑗))
5452, 53imbi12d 234 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → (((𝑔‘(𝑛 + 1)) = (𝑔𝑦) → (𝑛 + 1) = 𝑦) ↔ ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5550, 54rspc2v 2890 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5647, 33, 55syl2anc 411 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5746, 56mpd 13 . . . . . . . . . . 11 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗))
5842, 57mtod 665 . . . . . . . . . 10 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ¬ (𝑔‘(𝑛 + 1)) = (𝑔𝑗))
5958neqned 2383 . . . . . . . . 9 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗))
6059ralrimiva 2579 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗))
61 fveq2 5576 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝑔𝑘) = (𝑔‘(𝑛 + 1)))
6261neeq1d 2394 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝑔𝑘) ≠ (𝑔𝑗) ↔ (𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)))
6362ralbidv 2506 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (∀𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗) ↔ ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)))
6463rspcev 2877 . . . . . . . 8 (((𝑛 + 1) ∈ ℕ0 ∧ ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
6531, 60, 64syl2anc 411 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
6665ralrimiva 2579 . . . . . 6 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
67 cnvexg 5220 . . . . . . . 8 (𝑔 ∈ V → 𝑔 ∈ V)
6867elv 2776 . . . . . . 7 𝑔 ∈ V
69 foeq1 5494 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓:ℕ0onto𝐴𝑔:ℕ0onto𝐴))
70 fveq1 5575 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑘) = (𝑔𝑘))
71 fveq1 5575 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑗) = (𝑔𝑗))
7270, 71neeq12d 2396 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓𝑘) ≠ (𝑓𝑗) ↔ (𝑔𝑘) ≠ (𝑔𝑗)))
7372rexralbidv 2532 . . . . . . . . 9 (𝑓 = 𝑔 → (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗) ↔ ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)))
7473ralbidv 2506 . . . . . . . 8 (𝑓 = 𝑔 → (∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗) ↔ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)))
7569, 74anbi12d 473 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)) ↔ (𝑔:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))))
7668, 75spcev 2868 . . . . . 6 ((𝑔:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)) → ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)))
7729, 66, 76syl2anc 411 . . . . 5 (𝑔:𝐴1-1-onto→ℕ0 → ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)))
7826, 77jca 306 . . . 4 (𝑔:𝐴1-1-onto→ℕ0 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
7978adantl 277 . . 3 ((𝐴 ≈ ℕ0𝑔:𝐴1-1-onto→ℕ0) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
806, 79exlimddv 1922 . 2 (𝐴 ≈ ℕ0 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
814, 80syl 14 1 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836  w3a 981   = wceq 1373  wex 1515  wcel 2176  wne 2376  wral 2484  wrex 2485  Vcvv 2772   class class class wbr 4044  ccnv 4674  ran crn 4676   Fn wfn 5266  wf 5267  ontowfo 5269  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cen 6825  0cc0 7925  1c1 7926   + caddc 7928   < clt 8107  cle 8108  cn 9036  0cn0 9295  cz 9372  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-er 6620  df-en 6828  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by:  ennnfone  12796
  Copyright terms: Public domain W3C validator