ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemim GIF version

Theorem ennnfonelemim 12668
Description: Lemma for ennnfone 12669. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
Assertion
Ref Expression
ennnfonelemim (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
Distinct variable groups:   𝐴,𝑓,𝑗,𝑛   𝑥,𝐴,𝑦,𝑛   𝑓,𝑘,𝑗,𝑛   𝑦,𝑗
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem ennnfonelemim
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 nn0ennn 10544 . . . 4 0 ≈ ℕ
21ensymi 6850 . . 3 ℕ ≈ ℕ0
3 entr 6852 . . 3 ((𝐴 ≈ ℕ ∧ ℕ ≈ ℕ0) → 𝐴 ≈ ℕ0)
42, 3mpan2 425 . 2 (𝐴 ≈ ℕ → 𝐴 ≈ ℕ0)
5 bren 6815 . . . 4 (𝐴 ≈ ℕ0 ↔ ∃𝑔 𝑔:𝐴1-1-onto→ℕ0)
65biimpi 120 . . 3 (𝐴 ≈ ℕ0 → ∃𝑔 𝑔:𝐴1-1-onto→ℕ0)
7 f1of 5507 . . . . . . . . . . 11 (𝑔:𝐴1-1-onto→ℕ0𝑔:𝐴⟶ℕ0)
87adantr 276 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑔:𝐴⟶ℕ0)
9 simprl 529 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
108, 9ffvelcdmd 5701 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑥) ∈ ℕ0)
1110nn0zd 9465 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑥) ∈ ℤ)
12 simprr 531 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
138, 12ffvelcdmd 5701 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑦) ∈ ℕ0)
1413nn0zd 9465 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑦) ∈ ℤ)
15 zdceq 9420 . . . . . . . 8 (((𝑔𝑥) ∈ ℤ ∧ (𝑔𝑦) ∈ ℤ) → DECID (𝑔𝑥) = (𝑔𝑦))
1611, 14, 15syl2anc 411 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → DECID (𝑔𝑥) = (𝑔𝑦))
17 dff1o6 5826 . . . . . . . . . . . . 13 (𝑔:𝐴1-1-onto→ℕ0 ↔ (𝑔 Fn 𝐴 ∧ ran 𝑔 = ℕ0 ∧ ∀𝑥𝐴𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
1817simp3bi 1016 . . . . . . . . . . . 12 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥𝐴𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
1918r19.21bi 2585 . . . . . . . . . . 11 ((𝑔:𝐴1-1-onto→ℕ0𝑥𝐴) → ∀𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
2019r19.21bi 2585 . . . . . . . . . 10 (((𝑔:𝐴1-1-onto→ℕ0𝑥𝐴) ∧ 𝑦𝐴) → ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
2120anasss 399 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
22 fveq2 5561 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
2321, 22impbid1 142 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑔𝑥) = (𝑔𝑦) ↔ 𝑥 = 𝑦))
2423dcbid 839 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (DECID (𝑔𝑥) = (𝑔𝑦) ↔ DECID 𝑥 = 𝑦))
2516, 24mpbid 147 . . . . . 6 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → DECID 𝑥 = 𝑦)
2625ralrimivva 2579 . . . . 5 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
27 f1ocnv 5520 . . . . . . 7 (𝑔:𝐴1-1-onto→ℕ0𝑔:ℕ01-1-onto𝐴)
28 f1ofo 5514 . . . . . . 7 (𝑔:ℕ01-1-onto𝐴𝑔:ℕ0onto𝐴)
2927, 28syl 14 . . . . . 6 (𝑔:𝐴1-1-onto→ℕ0𝑔:ℕ0onto𝐴)
30 peano2nn0 9308 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3130adantl 277 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
32 elfznn0 10208 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑛) → 𝑗 ∈ ℕ0)
3332adantl 277 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ ℕ0)
3433nn0red 9322 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ ℝ)
35 elfzle2 10122 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑛) → 𝑗𝑛)
3635adantl 277 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗𝑛)
37 simplr 528 . . . . . . . . . . . . . . 15 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑛 ∈ ℕ0)
38 nn0leltp1 9408 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑗𝑛𝑗 < (𝑛 + 1)))
3933, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑗𝑛𝑗 < (𝑛 + 1)))
4036, 39mpbid 147 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 < (𝑛 + 1))
4134, 40gtned 8158 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑛 + 1) ≠ 𝑗)
4241neneqd 2388 . . . . . . . . . . 11 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ¬ (𝑛 + 1) = 𝑗)
43 dff1o6 5826 . . . . . . . . . . . . . . 15 (𝑔:ℕ01-1-onto𝐴 ↔ (𝑔 Fn ℕ0 ∧ ran 𝑔 = 𝐴 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
4427, 43sylib 122 . . . . . . . . . . . . . 14 (𝑔:𝐴1-1-onto→ℕ0 → (𝑔 Fn ℕ0 ∧ ran 𝑔 = 𝐴 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
4544simp3d 1013 . . . . . . . . . . . . 13 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
4645ad2antrr 488 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
4731adantr 276 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑛 + 1) ∈ ℕ0)
48 fveqeq2 5570 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → ((𝑔𝑥) = (𝑔𝑦) ↔ (𝑔‘(𝑛 + 1)) = (𝑔𝑦)))
49 eqeq1 2203 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → (𝑥 = 𝑦 ↔ (𝑛 + 1) = 𝑦))
5048, 49imbi12d 234 . . . . . . . . . . . . . 14 (𝑥 = (𝑛 + 1) → (((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) ↔ ((𝑔‘(𝑛 + 1)) = (𝑔𝑦) → (𝑛 + 1) = 𝑦)))
51 fveq2 5561 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑗 → (𝑔𝑦) = (𝑔𝑗))
5251eqeq2d 2208 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ((𝑔‘(𝑛 + 1)) = (𝑔𝑦) ↔ (𝑔‘(𝑛 + 1)) = (𝑔𝑗)))
53 eqeq2 2206 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ((𝑛 + 1) = 𝑦 ↔ (𝑛 + 1) = 𝑗))
5452, 53imbi12d 234 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → (((𝑔‘(𝑛 + 1)) = (𝑔𝑦) → (𝑛 + 1) = 𝑦) ↔ ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5550, 54rspc2v 2881 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5647, 33, 55syl2anc 411 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5746, 56mpd 13 . . . . . . . . . . 11 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗))
5842, 57mtod 664 . . . . . . . . . 10 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ¬ (𝑔‘(𝑛 + 1)) = (𝑔𝑗))
5958neqned 2374 . . . . . . . . 9 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗))
6059ralrimiva 2570 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗))
61 fveq2 5561 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝑔𝑘) = (𝑔‘(𝑛 + 1)))
6261neeq1d 2385 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝑔𝑘) ≠ (𝑔𝑗) ↔ (𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)))
6362ralbidv 2497 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (∀𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗) ↔ ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)))
6463rspcev 2868 . . . . . . . 8 (((𝑛 + 1) ∈ ℕ0 ∧ ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
6531, 60, 64syl2anc 411 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
6665ralrimiva 2570 . . . . . 6 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
67 cnvexg 5208 . . . . . . . 8 (𝑔 ∈ V → 𝑔 ∈ V)
6867elv 2767 . . . . . . 7 𝑔 ∈ V
69 foeq1 5479 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓:ℕ0onto𝐴𝑔:ℕ0onto𝐴))
70 fveq1 5560 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑘) = (𝑔𝑘))
71 fveq1 5560 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑗) = (𝑔𝑗))
7270, 71neeq12d 2387 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓𝑘) ≠ (𝑓𝑗) ↔ (𝑔𝑘) ≠ (𝑔𝑗)))
7372rexralbidv 2523 . . . . . . . . 9 (𝑓 = 𝑔 → (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗) ↔ ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)))
7473ralbidv 2497 . . . . . . . 8 (𝑓 = 𝑔 → (∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗) ↔ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)))
7569, 74anbi12d 473 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)) ↔ (𝑔:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))))
7668, 75spcev 2859 . . . . . 6 ((𝑔:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)) → ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)))
7729, 66, 76syl2anc 411 . . . . 5 (𝑔:𝐴1-1-onto→ℕ0 → ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)))
7826, 77jca 306 . . . 4 (𝑔:𝐴1-1-onto→ℕ0 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
7978adantl 277 . . 3 ((𝐴 ≈ ℕ0𝑔:𝐴1-1-onto→ℕ0) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
806, 79exlimddv 1913 . 2 (𝐴 ≈ ℕ0 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
814, 80syl 14 1 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  wrex 2476  Vcvv 2763   class class class wbr 4034  ccnv 4663  ran crn 4665   Fn wfn 5254  wf 5255  ontowfo 5257  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  cen 6806  0cc0 7898  1c1 7899   + caddc 7901   < clt 8080  cle 8081  cn 9009  0cn0 9268  cz 9345  ...cfz 10102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-er 6601  df-en 6809  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103
This theorem is referenced by:  ennnfone  12669
  Copyright terms: Public domain W3C validator