ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemim GIF version

Theorem ennnfonelemim 12910
Description: Lemma for ennnfone 12911. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
Assertion
Ref Expression
ennnfonelemim (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
Distinct variable groups:   𝐴,𝑓,𝑗,𝑛   𝑥,𝐴,𝑦,𝑛   𝑓,𝑘,𝑗,𝑛   𝑦,𝑗
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem ennnfonelemim
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 nn0ennn 10615 . . . 4 0 ≈ ℕ
21ensymi 6897 . . 3 ℕ ≈ ℕ0
3 entr 6899 . . 3 ((𝐴 ≈ ℕ ∧ ℕ ≈ ℕ0) → 𝐴 ≈ ℕ0)
42, 3mpan2 425 . 2 (𝐴 ≈ ℕ → 𝐴 ≈ ℕ0)
5 bren 6858 . . . 4 (𝐴 ≈ ℕ0 ↔ ∃𝑔 𝑔:𝐴1-1-onto→ℕ0)
65biimpi 120 . . 3 (𝐴 ≈ ℕ0 → ∃𝑔 𝑔:𝐴1-1-onto→ℕ0)
7 f1of 5544 . . . . . . . . . . 11 (𝑔:𝐴1-1-onto→ℕ0𝑔:𝐴⟶ℕ0)
87adantr 276 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑔:𝐴⟶ℕ0)
9 simprl 529 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
108, 9ffvelcdmd 5739 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑥) ∈ ℕ0)
1110nn0zd 9528 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑥) ∈ ℤ)
12 simprr 531 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
138, 12ffvelcdmd 5739 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑦) ∈ ℕ0)
1413nn0zd 9528 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑦) ∈ ℤ)
15 zdceq 9483 . . . . . . . 8 (((𝑔𝑥) ∈ ℤ ∧ (𝑔𝑦) ∈ ℤ) → DECID (𝑔𝑥) = (𝑔𝑦))
1611, 14, 15syl2anc 411 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → DECID (𝑔𝑥) = (𝑔𝑦))
17 dff1o6 5868 . . . . . . . . . . . . 13 (𝑔:𝐴1-1-onto→ℕ0 ↔ (𝑔 Fn 𝐴 ∧ ran 𝑔 = ℕ0 ∧ ∀𝑥𝐴𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
1817simp3bi 1017 . . . . . . . . . . . 12 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥𝐴𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
1918r19.21bi 2596 . . . . . . . . . . 11 ((𝑔:𝐴1-1-onto→ℕ0𝑥𝐴) → ∀𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
2019r19.21bi 2596 . . . . . . . . . 10 (((𝑔:𝐴1-1-onto→ℕ0𝑥𝐴) ∧ 𝑦𝐴) → ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
2120anasss 399 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
22 fveq2 5599 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
2321, 22impbid1 142 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑔𝑥) = (𝑔𝑦) ↔ 𝑥 = 𝑦))
2423dcbid 840 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (DECID (𝑔𝑥) = (𝑔𝑦) ↔ DECID 𝑥 = 𝑦))
2516, 24mpbid 147 . . . . . 6 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → DECID 𝑥 = 𝑦)
2625ralrimivva 2590 . . . . 5 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
27 f1ocnv 5557 . . . . . . 7 (𝑔:𝐴1-1-onto→ℕ0𝑔:ℕ01-1-onto𝐴)
28 f1ofo 5551 . . . . . . 7 (𝑔:ℕ01-1-onto𝐴𝑔:ℕ0onto𝐴)
2927, 28syl 14 . . . . . 6 (𝑔:𝐴1-1-onto→ℕ0𝑔:ℕ0onto𝐴)
30 peano2nn0 9370 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3130adantl 277 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
32 elfznn0 10271 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑛) → 𝑗 ∈ ℕ0)
3332adantl 277 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ ℕ0)
3433nn0red 9384 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ ℝ)
35 elfzle2 10185 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑛) → 𝑗𝑛)
3635adantl 277 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗𝑛)
37 simplr 528 . . . . . . . . . . . . . . 15 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑛 ∈ ℕ0)
38 nn0leltp1 9471 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑗𝑛𝑗 < (𝑛 + 1)))
3933, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑗𝑛𝑗 < (𝑛 + 1)))
4036, 39mpbid 147 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 < (𝑛 + 1))
4134, 40gtned 8220 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑛 + 1) ≠ 𝑗)
4241neneqd 2399 . . . . . . . . . . 11 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ¬ (𝑛 + 1) = 𝑗)
43 dff1o6 5868 . . . . . . . . . . . . . . 15 (𝑔:ℕ01-1-onto𝐴 ↔ (𝑔 Fn ℕ0 ∧ ran 𝑔 = 𝐴 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
4427, 43sylib 122 . . . . . . . . . . . . . 14 (𝑔:𝐴1-1-onto→ℕ0 → (𝑔 Fn ℕ0 ∧ ran 𝑔 = 𝐴 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
4544simp3d 1014 . . . . . . . . . . . . 13 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
4645ad2antrr 488 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
4731adantr 276 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑛 + 1) ∈ ℕ0)
48 fveqeq2 5608 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → ((𝑔𝑥) = (𝑔𝑦) ↔ (𝑔‘(𝑛 + 1)) = (𝑔𝑦)))
49 eqeq1 2214 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → (𝑥 = 𝑦 ↔ (𝑛 + 1) = 𝑦))
5048, 49imbi12d 234 . . . . . . . . . . . . . 14 (𝑥 = (𝑛 + 1) → (((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) ↔ ((𝑔‘(𝑛 + 1)) = (𝑔𝑦) → (𝑛 + 1) = 𝑦)))
51 fveq2 5599 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑗 → (𝑔𝑦) = (𝑔𝑗))
5251eqeq2d 2219 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ((𝑔‘(𝑛 + 1)) = (𝑔𝑦) ↔ (𝑔‘(𝑛 + 1)) = (𝑔𝑗)))
53 eqeq2 2217 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ((𝑛 + 1) = 𝑦 ↔ (𝑛 + 1) = 𝑗))
5452, 53imbi12d 234 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → (((𝑔‘(𝑛 + 1)) = (𝑔𝑦) → (𝑛 + 1) = 𝑦) ↔ ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5550, 54rspc2v 2897 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5647, 33, 55syl2anc 411 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5746, 56mpd 13 . . . . . . . . . . 11 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗))
5842, 57mtod 665 . . . . . . . . . 10 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ¬ (𝑔‘(𝑛 + 1)) = (𝑔𝑗))
5958neqned 2385 . . . . . . . . 9 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗))
6059ralrimiva 2581 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗))
61 fveq2 5599 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝑔𝑘) = (𝑔‘(𝑛 + 1)))
6261neeq1d 2396 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝑔𝑘) ≠ (𝑔𝑗) ↔ (𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)))
6362ralbidv 2508 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (∀𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗) ↔ ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)))
6463rspcev 2884 . . . . . . . 8 (((𝑛 + 1) ∈ ℕ0 ∧ ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
6531, 60, 64syl2anc 411 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
6665ralrimiva 2581 . . . . . 6 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
67 cnvexg 5239 . . . . . . . 8 (𝑔 ∈ V → 𝑔 ∈ V)
6867elv 2780 . . . . . . 7 𝑔 ∈ V
69 foeq1 5516 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓:ℕ0onto𝐴𝑔:ℕ0onto𝐴))
70 fveq1 5598 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑘) = (𝑔𝑘))
71 fveq1 5598 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑗) = (𝑔𝑗))
7270, 71neeq12d 2398 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓𝑘) ≠ (𝑓𝑗) ↔ (𝑔𝑘) ≠ (𝑔𝑗)))
7372rexralbidv 2534 . . . . . . . . 9 (𝑓 = 𝑔 → (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗) ↔ ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)))
7473ralbidv 2508 . . . . . . . 8 (𝑓 = 𝑔 → (∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗) ↔ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)))
7569, 74anbi12d 473 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)) ↔ (𝑔:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))))
7668, 75spcev 2875 . . . . . 6 ((𝑔:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)) → ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)))
7729, 66, 76syl2anc 411 . . . . 5 (𝑔:𝐴1-1-onto→ℕ0 → ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)))
7826, 77jca 306 . . . 4 (𝑔:𝐴1-1-onto→ℕ0 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
7978adantl 277 . . 3 ((𝐴 ≈ ℕ0𝑔:𝐴1-1-onto→ℕ0) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
806, 79exlimddv 1923 . 2 (𝐴 ≈ ℕ0 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
814, 80syl 14 1 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2178  wne 2378  wral 2486  wrex 2487  Vcvv 2776   class class class wbr 4059  ccnv 4692  ran crn 4694   Fn wfn 5285  wf 5286  ontowfo 5288  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  cen 6848  0cc0 7960  1c1 7961   + caddc 7963   < clt 8142  cle 8143  cn 9071  0cn0 9330  cz 9407  ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-er 6643  df-en 6851  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by:  ennnfone  12911
  Copyright terms: Public domain W3C validator