ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemim GIF version

Theorem ennnfonelemim 12641
Description: Lemma for ennnfone 12642. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
Assertion
Ref Expression
ennnfonelemim (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
Distinct variable groups:   𝐴,𝑓,𝑗,𝑛   𝑥,𝐴,𝑦,𝑛   𝑓,𝑘,𝑗,𝑛   𝑦,𝑗
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem ennnfonelemim
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 nn0ennn 10525 . . . 4 0 ≈ ℕ
21ensymi 6841 . . 3 ℕ ≈ ℕ0
3 entr 6843 . . 3 ((𝐴 ≈ ℕ ∧ ℕ ≈ ℕ0) → 𝐴 ≈ ℕ0)
42, 3mpan2 425 . 2 (𝐴 ≈ ℕ → 𝐴 ≈ ℕ0)
5 bren 6806 . . . 4 (𝐴 ≈ ℕ0 ↔ ∃𝑔 𝑔:𝐴1-1-onto→ℕ0)
65biimpi 120 . . 3 (𝐴 ≈ ℕ0 → ∃𝑔 𝑔:𝐴1-1-onto→ℕ0)
7 f1of 5504 . . . . . . . . . . 11 (𝑔:𝐴1-1-onto→ℕ0𝑔:𝐴⟶ℕ0)
87adantr 276 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑔:𝐴⟶ℕ0)
9 simprl 529 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
108, 9ffvelcdmd 5698 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑥) ∈ ℕ0)
1110nn0zd 9446 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑥) ∈ ℤ)
12 simprr 531 . . . . . . . . . 10 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
138, 12ffvelcdmd 5698 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑦) ∈ ℕ0)
1413nn0zd 9446 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (𝑔𝑦) ∈ ℤ)
15 zdceq 9401 . . . . . . . 8 (((𝑔𝑥) ∈ ℤ ∧ (𝑔𝑦) ∈ ℤ) → DECID (𝑔𝑥) = (𝑔𝑦))
1611, 14, 15syl2anc 411 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → DECID (𝑔𝑥) = (𝑔𝑦))
17 dff1o6 5823 . . . . . . . . . . . . 13 (𝑔:𝐴1-1-onto→ℕ0 ↔ (𝑔 Fn 𝐴 ∧ ran 𝑔 = ℕ0 ∧ ∀𝑥𝐴𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
1817simp3bi 1016 . . . . . . . . . . . 12 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥𝐴𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
1918r19.21bi 2585 . . . . . . . . . . 11 ((𝑔:𝐴1-1-onto→ℕ0𝑥𝐴) → ∀𝑦𝐴 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
2019r19.21bi 2585 . . . . . . . . . 10 (((𝑔:𝐴1-1-onto→ℕ0𝑥𝐴) ∧ 𝑦𝐴) → ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
2120anasss 399 . . . . . . . . 9 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
22 fveq2 5558 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
2321, 22impbid1 142 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑔𝑥) = (𝑔𝑦) ↔ 𝑥 = 𝑦))
2423dcbid 839 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → (DECID (𝑔𝑥) = (𝑔𝑦) ↔ DECID 𝑥 = 𝑦))
2516, 24mpbid 147 . . . . . 6 ((𝑔:𝐴1-1-onto→ℕ0 ∧ (𝑥𝐴𝑦𝐴)) → DECID 𝑥 = 𝑦)
2625ralrimivva 2579 . . . . 5 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
27 f1ocnv 5517 . . . . . . 7 (𝑔:𝐴1-1-onto→ℕ0𝑔:ℕ01-1-onto𝐴)
28 f1ofo 5511 . . . . . . 7 (𝑔:ℕ01-1-onto𝐴𝑔:ℕ0onto𝐴)
2927, 28syl 14 . . . . . 6 (𝑔:𝐴1-1-onto→ℕ0𝑔:ℕ0onto𝐴)
30 peano2nn0 9289 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3130adantl 277 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
32 elfznn0 10189 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑛) → 𝑗 ∈ ℕ0)
3332adantl 277 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ ℕ0)
3433nn0red 9303 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ ℝ)
35 elfzle2 10103 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑛) → 𝑗𝑛)
3635adantl 277 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗𝑛)
37 simplr 528 . . . . . . . . . . . . . . 15 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑛 ∈ ℕ0)
38 nn0leltp1 9389 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑗𝑛𝑗 < (𝑛 + 1)))
3933, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑗𝑛𝑗 < (𝑛 + 1)))
4036, 39mpbid 147 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 < (𝑛 + 1))
4134, 40gtned 8139 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑛 + 1) ≠ 𝑗)
4241neneqd 2388 . . . . . . . . . . 11 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ¬ (𝑛 + 1) = 𝑗)
43 dff1o6 5823 . . . . . . . . . . . . . . 15 (𝑔:ℕ01-1-onto𝐴 ↔ (𝑔 Fn ℕ0 ∧ ran 𝑔 = 𝐴 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
4427, 43sylib 122 . . . . . . . . . . . . . 14 (𝑔:𝐴1-1-onto→ℕ0 → (𝑔 Fn ℕ0 ∧ ran 𝑔 = 𝐴 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦)))
4544simp3d 1013 . . . . . . . . . . . . 13 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
4645ad2antrr 488 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦))
4731adantr 276 . . . . . . . . . . . . 13 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑛 + 1) ∈ ℕ0)
48 fveqeq2 5567 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → ((𝑔𝑥) = (𝑔𝑦) ↔ (𝑔‘(𝑛 + 1)) = (𝑔𝑦)))
49 eqeq1 2203 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → (𝑥 = 𝑦 ↔ (𝑛 + 1) = 𝑦))
5048, 49imbi12d 234 . . . . . . . . . . . . . 14 (𝑥 = (𝑛 + 1) → (((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) ↔ ((𝑔‘(𝑛 + 1)) = (𝑔𝑦) → (𝑛 + 1) = 𝑦)))
51 fveq2 5558 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑗 → (𝑔𝑦) = (𝑔𝑗))
5251eqeq2d 2208 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ((𝑔‘(𝑛 + 1)) = (𝑔𝑦) ↔ (𝑔‘(𝑛 + 1)) = (𝑔𝑗)))
53 eqeq2 2206 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ((𝑛 + 1) = 𝑦 ↔ (𝑛 + 1) = 𝑗))
5452, 53imbi12d 234 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → (((𝑔‘(𝑛 + 1)) = (𝑔𝑦) → (𝑛 + 1) = 𝑦) ↔ ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5550, 54rspc2v 2881 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5647, 33, 55syl2anc 411 . . . . . . . . . . . 12 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑔𝑥) = (𝑔𝑦) → 𝑥 = 𝑦) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗)))
5746, 56mpd 13 . . . . . . . . . . 11 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ((𝑔‘(𝑛 + 1)) = (𝑔𝑗) → (𝑛 + 1) = 𝑗))
5842, 57mtod 664 . . . . . . . . . 10 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → ¬ (𝑔‘(𝑛 + 1)) = (𝑔𝑗))
5958neqned 2374 . . . . . . . . 9 (((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑛)) → (𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗))
6059ralrimiva 2570 . . . . . . . 8 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗))
61 fveq2 5558 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝑔𝑘) = (𝑔‘(𝑛 + 1)))
6261neeq1d 2385 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝑔𝑘) ≠ (𝑔𝑗) ↔ (𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)))
6362ralbidv 2497 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (∀𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗) ↔ ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)))
6463rspcev 2868 . . . . . . . 8 (((𝑛 + 1) ∈ ℕ0 ∧ ∀𝑗 ∈ (0...𝑛)(𝑔‘(𝑛 + 1)) ≠ (𝑔𝑗)) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
6531, 60, 64syl2anc 411 . . . . . . 7 ((𝑔:𝐴1-1-onto→ℕ0𝑛 ∈ ℕ0) → ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
6665ralrimiva 2570 . . . . . 6 (𝑔:𝐴1-1-onto→ℕ0 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))
67 cnvexg 5207 . . . . . . . 8 (𝑔 ∈ V → 𝑔 ∈ V)
6867elv 2767 . . . . . . 7 𝑔 ∈ V
69 foeq1 5476 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓:ℕ0onto𝐴𝑔:ℕ0onto𝐴))
70 fveq1 5557 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑘) = (𝑔𝑘))
71 fveq1 5557 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑗) = (𝑔𝑗))
7270, 71neeq12d 2387 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓𝑘) ≠ (𝑓𝑗) ↔ (𝑔𝑘) ≠ (𝑔𝑗)))
7372rexralbidv 2523 . . . . . . . . 9 (𝑓 = 𝑔 → (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗) ↔ ∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)))
7473ralbidv 2497 . . . . . . . 8 (𝑓 = 𝑔 → (∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗) ↔ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)))
7569, 74anbi12d 473 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)) ↔ (𝑔:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗))))
7668, 75spcev 2859 . . . . . 6 ((𝑔:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑔𝑘) ≠ (𝑔𝑗)) → ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)))
7729, 66, 76syl2anc 411 . . . . 5 (𝑔:𝐴1-1-onto→ℕ0 → ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗)))
7826, 77jca 306 . . . 4 (𝑔:𝐴1-1-onto→ℕ0 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
7978adantl 277 . . 3 ((𝐴 ≈ ℕ0𝑔:𝐴1-1-onto→ℕ0) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
806, 79exlimddv 1913 . 2 (𝐴 ≈ ℕ0 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
814, 80syl 14 1 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  wrex 2476  Vcvv 2763   class class class wbr 4033  ccnv 4662  ran crn 4664   Fn wfn 5253  wf 5254  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  cen 6797  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cn 8990  0cn0 9249  cz 9326  ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  ennnfone  12642
  Copyright terms: Public domain W3C validator