Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeq1d | GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq1d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | neeq1 2358 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ≠ wne 2345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-ne 2346 |
This theorem is referenced by: neeq12d 2365 eqnetrd 2369 prnzg 3713 hashprg 10756 algcvg 12015 algcvga 12018 eucalgcvga 12025 rpdvds 12066 phibndlem 12183 dfphi2 12187 pcaddlem 12305 ennnfoneleminc 12379 ennnfonelemex 12382 ennnfonelemhom 12383 ennnfonelemnn0 12390 ennnfonelemr 12391 ennnfonelemim 12392 ctinfomlemom 12395 lgsne0 14019 dceqnconst 14377 dcapnconst 14378 nconstwlpolem 14382 |
Copyright terms: Public domain | W3C validator |