| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq1d | GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq1d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | neeq1 2380 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: neeq12d 2387 eqnetrd 2391 prnzg 3747 pw2f1odclem 6904 hashprg 10917 algcvg 12241 algcvga 12244 eucalgcvga 12251 rpdvds 12292 phibndlem 12409 dfphi2 12413 pcaddlem 12533 ennnfoneleminc 12653 ennnfonelemex 12656 ennnfonelemhom 12657 ennnfonelemnn0 12664 ennnfonelemr 12665 ennnfonelemim 12666 ctinfomlemom 12669 setscomd 12744 lgsne0 15363 dceqnconst 15791 dcapnconst 15792 nconstwlpolem 15796 |
| Copyright terms: Public domain | W3C validator |