![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeq1d | GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq1d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | neeq1 2377 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: neeq12d 2384 eqnetrd 2388 prnzg 3742 pw2f1odclem 6890 hashprg 10879 algcvg 12186 algcvga 12189 eucalgcvga 12196 rpdvds 12237 phibndlem 12354 dfphi2 12358 pcaddlem 12477 ennnfoneleminc 12568 ennnfonelemex 12571 ennnfonelemhom 12572 ennnfonelemnn0 12579 ennnfonelemr 12580 ennnfonelemim 12581 ctinfomlemom 12584 setscomd 12659 lgsne0 15154 dceqnconst 15550 dcapnconst 15551 nconstwlpolem 15555 |
Copyright terms: Public domain | W3C validator |