![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeq1d | GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq1d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | neeq1 2377 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: neeq12d 2384 eqnetrd 2388 prnzg 3743 pw2f1odclem 6892 hashprg 10882 algcvg 12189 algcvga 12192 eucalgcvga 12199 rpdvds 12240 phibndlem 12357 dfphi2 12361 pcaddlem 12480 ennnfoneleminc 12571 ennnfonelemex 12574 ennnfonelemhom 12575 ennnfonelemnn0 12582 ennnfonelemr 12583 ennnfonelemim 12584 ctinfomlemom 12587 setscomd 12662 lgsne0 15195 dceqnconst 15620 dcapnconst 15621 nconstwlpolem 15625 |
Copyright terms: Public domain | W3C validator |