| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq1d | GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq1d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | neeq1 2393 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ≠ wne 2380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1473 ax-gen 1475 ax-4 1536 ax-17 1552 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-ne 2381 |
| This theorem is referenced by: neeq12d 2400 eqnetrd 2404 prnzg 3771 pw2f1odclem 6963 hashprg 10997 algcvg 12536 algcvga 12539 eucalgcvga 12546 rpdvds 12587 phibndlem 12704 dfphi2 12708 pcaddlem 12828 ennnfoneleminc 12948 ennnfonelemex 12951 ennnfonelemhom 12952 ennnfonelemnn0 12959 ennnfonelemr 12960 ennnfonelemim 12961 ctinfomlemom 12964 setscomd 13039 lgsne0 15682 dceqnconst 16339 dcapnconst 16340 nconstwlpolem 16344 |
| Copyright terms: Public domain | W3C validator |