![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeq1d | GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq1d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | neeq1 2373 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 df-ne 2361 |
This theorem is referenced by: neeq12d 2380 eqnetrd 2384 prnzg 3731 pw2f1odclem 6863 hashprg 10823 algcvg 12083 algcvga 12086 eucalgcvga 12093 rpdvds 12134 phibndlem 12251 dfphi2 12255 pcaddlem 12374 ennnfoneleminc 12465 ennnfonelemex 12468 ennnfonelemhom 12469 ennnfonelemnn0 12476 ennnfonelemr 12477 ennnfonelemim 12478 ctinfomlemom 12481 setscomd 12556 lgsne0 14917 dceqnconst 15287 dcapnconst 15288 nconstwlpolem 15292 |
Copyright terms: Public domain | W3C validator |