| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq1d | GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq1d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | neeq1 2390 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: neeq12d 2397 eqnetrd 2401 prnzg 3760 pw2f1odclem 6943 hashprg 10966 algcvg 12420 algcvga 12423 eucalgcvga 12430 rpdvds 12471 phibndlem 12588 dfphi2 12592 pcaddlem 12712 ennnfoneleminc 12832 ennnfonelemex 12835 ennnfonelemhom 12836 ennnfonelemnn0 12843 ennnfonelemr 12844 ennnfonelemim 12845 ctinfomlemom 12848 setscomd 12923 lgsne0 15565 dceqnconst 16114 dcapnconst 16115 nconstwlpolem 16119 |
| Copyright terms: Public domain | W3C validator |