| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq1d | GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq1d | ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | neeq1 2380 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: neeq12d 2387 eqnetrd 2391 prnzg 3746 pw2f1odclem 6895 hashprg 10900 algcvg 12216 algcvga 12219 eucalgcvga 12226 rpdvds 12267 phibndlem 12384 dfphi2 12388 pcaddlem 12508 ennnfoneleminc 12628 ennnfonelemex 12631 ennnfonelemhom 12632 ennnfonelemnn0 12639 ennnfonelemr 12640 ennnfonelemim 12641 ctinfomlemom 12644 setscomd 12719 lgsne0 15279 dceqnconst 15704 dcapnconst 15705 nconstwlpolem 15709 |
| Copyright terms: Public domain | W3C validator |