ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr GIF version

Theorem isnzr 13325
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
isnzr (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))

Proof of Theorem isnzr
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5516 . . . 4 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
2 isnzr.o . . . 4 1 = (1r𝑅)
31, 2eqtr4di 2228 . . 3 (𝑟 = 𝑅 → (1r𝑟) = 1 )
4 fveq2 5516 . . . 4 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
5 isnzr.z . . . 4 0 = (0g𝑅)
64, 5eqtr4di 2228 . . 3 (𝑟 = 𝑅 → (0g𝑟) = 0 )
73, 6neeq12d 2367 . 2 (𝑟 = 𝑅 → ((1r𝑟) ≠ (0g𝑟) ↔ 10 ))
8 df-nzr 13324 . 2 NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
97, 8elrab2 2897 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347  cfv 5217  0gc0g 12705  1rcur 13142  Ringcrg 13179  NzRingcnzr 13323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-nzr 13324
This theorem is referenced by:  nzrnz  13326  ringelnzr  13328  subrgnzr  13363  zringnzr  13495
  Copyright terms: Public domain W3C validator