| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnzr | GIF version | ||
| Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isnzr | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5558 | . . . 4 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
| 2 | isnzr.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2247 | . . 3 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 4 | fveq2 5558 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 5 | isnzr.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2247 | . . 3 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 7 | 3, 6 | neeq12d 2387 | . 2 ⊢ (𝑟 = 𝑅 → ((1r‘𝑟) ≠ (0g‘𝑟) ↔ 1 ≠ 0 )) |
| 8 | df-nzr 13736 | . 2 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 9 | 7, 8 | elrab2 2923 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ‘cfv 5258 0gc0g 12927 1rcur 13515 Ringcrg 13552 NzRingcnzr 13735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-nzr 13736 |
| This theorem is referenced by: nzrnz 13738 isnzr2 13740 opprnzrbg 13741 ringelnzr 13743 subrgnzr 13798 zringnzr 14158 |
| Copyright terms: Public domain | W3C validator |