ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr GIF version

Theorem isnzr 14018
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
isnzr (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))

Proof of Theorem isnzr
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5589 . . . 4 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
2 isnzr.o . . . 4 1 = (1r𝑅)
31, 2eqtr4di 2257 . . 3 (𝑟 = 𝑅 → (1r𝑟) = 1 )
4 fveq2 5589 . . . 4 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
5 isnzr.z . . . 4 0 = (0g𝑅)
64, 5eqtr4di 2257 . . 3 (𝑟 = 𝑅 → (0g𝑟) = 0 )
73, 6neeq12d 2397 . 2 (𝑟 = 𝑅 → ((1r𝑟) ≠ (0g𝑟) ↔ 10 ))
8 df-nzr 14017 . 2 NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
97, 8elrab2 2936 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177  wne 2377  cfv 5280  0gc0g 13163  1rcur 13796  Ringcrg 13833  NzRingcnzr 14016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-nzr 14017
This theorem is referenced by:  nzrnz  14019  isnzr2  14021  opprnzrbg  14022  ringelnzr  14024  subrgnzr  14079  zringnzr  14439
  Copyright terms: Public domain W3C validator