![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeq2d | GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | neeq2 2378 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: neeq12d 2384 neeqtrd 2392 sqrt2irr 12300 ennnfonelemk 12557 ennnfoneleminc 12568 ennnfonelemex 12571 ennnfonelemnn0 12579 ennnfonelemr 12580 setscomd 12659 |
Copyright terms: Public domain | W3C validator |