Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdiff GIF version

Theorem apdiff 13761
Description: The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.)
Assertion
Ref Expression
apdiff (𝐴 ∈ ℝ → (∀𝑞 ∈ ℚ 𝐴 # 𝑞 ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))))
Distinct variable group:   𝐴,𝑞,𝑟

Proof of Theorem apdiff
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 breq2 3980 . . 3 (𝑞 = 𝑠 → (𝐴 # 𝑞𝐴 # 𝑠))
21cbvralv 2689 . 2 (∀𝑞 ∈ ℚ 𝐴 # 𝑞 ↔ ∀𝑠 ∈ ℚ 𝐴 # 𝑠)
3 simplll 523 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝐴 ∈ ℝ)
43adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑞 < 𝑟) → 𝐴 ∈ ℝ)
5 simplrl 525 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞 ∈ ℚ)
65adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑞 < 𝑟) → 𝑞 ∈ ℚ)
7 simplrr 526 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑟 ∈ ℚ)
87adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑞 < 𝑟) → 𝑟 ∈ ℚ)
9 simpr 109 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑞 < 𝑟) → 𝑞 < 𝑟)
10 breq2 3980 . . . . . . . . . 10 (𝑠 = ((𝑞 + 𝑟) / 2) → (𝐴 # 𝑠𝐴 # ((𝑞 + 𝑟) / 2)))
11 simpllr 524 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ∀𝑠 ∈ ℚ 𝐴 # 𝑠)
12 qaddcl 9564 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ) → (𝑞 + 𝑟) ∈ ℚ)
135, 7, 12syl2anc 409 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (𝑞 + 𝑟) ∈ ℚ)
14 2z 9210 . . . . . . . . . . . 12 2 ∈ ℤ
15 zq 9555 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ ℚ)
1614, 15mp1i 10 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 2 ∈ ℚ)
17 2ne0 8940 . . . . . . . . . . . 12 2 ≠ 0
1817a1i 9 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 2 ≠ 0)
19 qdivcl 9572 . . . . . . . . . . 11 (((𝑞 + 𝑟) ∈ ℚ ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → ((𝑞 + 𝑟) / 2) ∈ ℚ)
2013, 16, 18, 19syl3anc 1227 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ((𝑞 + 𝑟) / 2) ∈ ℚ)
2110, 11, 20rspcdva 2830 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝐴 # ((𝑞 + 𝑟) / 2))
223recnd 7918 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝐴 ∈ ℂ)
23 qcn 9563 . . . . . . . . . . 11 (((𝑞 + 𝑟) / 2) ∈ ℚ → ((𝑞 + 𝑟) / 2) ∈ ℂ)
2420, 23syl 14 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ((𝑞 + 𝑟) / 2) ∈ ℂ)
25 apsym 8495 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((𝑞 + 𝑟) / 2) ∈ ℂ) → (𝐴 # ((𝑞 + 𝑟) / 2) ↔ ((𝑞 + 𝑟) / 2) # 𝐴))
2622, 24, 25syl2anc 409 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (𝐴 # ((𝑞 + 𝑟) / 2) ↔ ((𝑞 + 𝑟) / 2) # 𝐴))
2721, 26mpbid 146 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ((𝑞 + 𝑟) / 2) # 𝐴)
2827adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑞 < 𝑟) → ((𝑞 + 𝑟) / 2) # 𝐴)
294, 6, 8, 9, 28apdifflemf 13759 . . . . . 6 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑞 < 𝑟) → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))
303adantr 274 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → 𝐴 ∈ ℝ)
317adantr 274 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → 𝑟 ∈ ℚ)
325adantr 274 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → 𝑞 ∈ ℚ)
33 simpr 109 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → 𝑟 < 𝑞)
34 qcn 9563 . . . . . . . . . . . . 13 (𝑞 ∈ ℚ → 𝑞 ∈ ℂ)
355, 34syl 14 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞 ∈ ℂ)
36 qcn 9563 . . . . . . . . . . . . 13 (𝑟 ∈ ℚ → 𝑟 ∈ ℂ)
377, 36syl 14 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑟 ∈ ℂ)
3835, 37addcomd 8040 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (𝑞 + 𝑟) = (𝑟 + 𝑞))
3938oveq1d 5851 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ((𝑞 + 𝑟) / 2) = ((𝑟 + 𝑞) / 2))
4039, 27eqbrtrrd 4000 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ((𝑟 + 𝑞) / 2) # 𝐴)
4140adantr 274 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → ((𝑟 + 𝑞) / 2) # 𝐴)
4230, 31, 32, 33, 41apdifflemf 13759 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → (abs‘(𝐴𝑟)) # (abs‘(𝐴𝑞)))
4322adantr 274 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → 𝐴 ∈ ℂ)
4431, 36syl 14 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → 𝑟 ∈ ℂ)
4543, 44subcld 8200 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → (𝐴𝑟) ∈ ℂ)
4645abscld 11109 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → (abs‘(𝐴𝑟)) ∈ ℝ)
4746recnd 7918 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → (abs‘(𝐴𝑟)) ∈ ℂ)
4832, 34syl 14 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → 𝑞 ∈ ℂ)
4943, 48subcld 8200 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → (𝐴𝑞) ∈ ℂ)
5049abscld 11109 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → (abs‘(𝐴𝑞)) ∈ ℝ)
5150recnd 7918 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → (abs‘(𝐴𝑞)) ∈ ℂ)
52 apsym 8495 . . . . . . . 8 (((abs‘(𝐴𝑟)) ∈ ℂ ∧ (abs‘(𝐴𝑞)) ∈ ℂ) → ((abs‘(𝐴𝑟)) # (abs‘(𝐴𝑞)) ↔ (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))))
5347, 51, 52syl2anc 409 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → ((abs‘(𝐴𝑟)) # (abs‘(𝐴𝑞)) ↔ (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))))
5442, 53mpbid 146 . . . . . 6 (((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) ∧ 𝑟 < 𝑞) → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))
55 simpr 109 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞𝑟)
56 qlttri2 9570 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ) → (𝑞𝑟 ↔ (𝑞 < 𝑟𝑟 < 𝑞)))
575, 7, 56syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (𝑞𝑟 ↔ (𝑞 < 𝑟𝑟 < 𝑞)))
5855, 57mpbid 146 . . . . . 6 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (𝑞 < 𝑟𝑟 < 𝑞))
5929, 54, 58mpjaodan 788 . . . . 5 ((((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))
6059ex 114 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) → (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))))
6160ralrimivva 2546 . . 3 ((𝐴 ∈ ℝ ∧ ∀𝑠 ∈ ℚ 𝐴 # 𝑠) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))))
62 simpll 519 . . . . 5 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → 𝐴 ∈ ℝ)
63 simpr 109 . . . . 5 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → 𝑠 ∈ ℚ)
64 simplr 520 . . . . . 6 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))))
65 neg1rr 8954 . . . . . . . 8 -1 ∈ ℝ
66 neg1lt0 8956 . . . . . . . . 9 -1 < 0
67 0lt1 8016 . . . . . . . . 9 0 < 1
68 0re 7890 . . . . . . . . . 10 0 ∈ ℝ
69 1re 7889 . . . . . . . . . 10 1 ∈ ℝ
7065, 68, 69lttri 7994 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
7166, 67, 70mp2an 423 . . . . . . . 8 -1 < 1
7265, 71ltneii 7986 . . . . . . 7 -1 ≠ 1
7372a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → -1 ≠ 1)
74 neg1z 9214 . . . . . . . 8 -1 ∈ ℤ
75 zq 9555 . . . . . . . 8 (-1 ∈ ℤ → -1 ∈ ℚ)
7674, 75mp1i 10 . . . . . . 7 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → -1 ∈ ℚ)
77 1z 9208 . . . . . . . 8 1 ∈ ℤ
78 zq 9555 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ ℚ)
7977, 78mp1i 10 . . . . . . 7 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → 1 ∈ ℚ)
80 simpl 108 . . . . . . . . . 10 ((𝑞 = -1 ∧ 𝑟 = 1) → 𝑞 = -1)
81 simpr 109 . . . . . . . . . 10 ((𝑞 = -1 ∧ 𝑟 = 1) → 𝑟 = 1)
8280, 81neeq12d 2354 . . . . . . . . 9 ((𝑞 = -1 ∧ 𝑟 = 1) → (𝑞𝑟 ↔ -1 ≠ 1))
8380oveq2d 5852 . . . . . . . . . . 11 ((𝑞 = -1 ∧ 𝑟 = 1) → (𝐴𝑞) = (𝐴 − -1))
8483fveq2d 5484 . . . . . . . . . 10 ((𝑞 = -1 ∧ 𝑟 = 1) → (abs‘(𝐴𝑞)) = (abs‘(𝐴 − -1)))
8581oveq2d 5852 . . . . . . . . . . 11 ((𝑞 = -1 ∧ 𝑟 = 1) → (𝐴𝑟) = (𝐴 − 1))
8685fveq2d 5484 . . . . . . . . . 10 ((𝑞 = -1 ∧ 𝑟 = 1) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − 1)))
8784, 86breq12d 3989 . . . . . . . . 9 ((𝑞 = -1 ∧ 𝑟 = 1) → ((abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)) ↔ (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1))))
8882, 87imbi12d 233 . . . . . . . 8 ((𝑞 = -1 ∧ 𝑟 = 1) → ((𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))) ↔ (-1 ≠ 1 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))))
8988rspc2gv 2837 . . . . . . 7 ((-1 ∈ ℚ ∧ 1 ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))) → (-1 ≠ 1 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))))
9076, 79, 89syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))) → (-1 ≠ 1 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))))
9164, 73, 90mp2d 47 . . . . 5 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))
92 simpllr 524 . . . . . 6 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))))
93 2cnd 8921 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 2 ∈ ℂ)
94 simplr 520 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 𝑠 ∈ ℚ)
95 qcn 9563 . . . . . . . . . 10 (𝑠 ∈ ℚ → 𝑠 ∈ ℂ)
9694, 95syl 14 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 𝑠 ∈ ℂ)
97 2ap0 8941 . . . . . . . . . 10 2 # 0
9897a1i 9 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 2 # 0)
99 simpr 109 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 𝑠 ≠ 0)
100 0z 9193 . . . . . . . . . . . 12 0 ∈ ℤ
101 zq 9555 . . . . . . . . . . . 12 (0 ∈ ℤ → 0 ∈ ℚ)
102100, 101mp1i 10 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 0 ∈ ℚ)
103 qapne 9568 . . . . . . . . . . 11 ((𝑠 ∈ ℚ ∧ 0 ∈ ℚ) → (𝑠 # 0 ↔ 𝑠 ≠ 0))
10494, 102, 103syl2anc 409 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → (𝑠 # 0 ↔ 𝑠 ≠ 0))
10599, 104mpbird 166 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 𝑠 # 0)
10693, 96, 98, 105mulap0d 8546 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → (2 · 𝑠) # 0)
10714, 15mp1i 10 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 2 ∈ ℚ)
108 qmulcl 9566 . . . . . . . . . . 11 ((2 ∈ ℚ ∧ 𝑠 ∈ ℚ) → (2 · 𝑠) ∈ ℚ)
109107, 94, 108syl2anc 409 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → (2 · 𝑠) ∈ ℚ)
110 qcn 9563 . . . . . . . . . 10 ((2 · 𝑠) ∈ ℚ → (2 · 𝑠) ∈ ℂ)
111109, 110syl 14 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → (2 · 𝑠) ∈ ℂ)
112 0cnd 7883 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 0 ∈ ℂ)
113 apsym 8495 . . . . . . . . 9 (((2 · 𝑠) ∈ ℂ ∧ 0 ∈ ℂ) → ((2 · 𝑠) # 0 ↔ 0 # (2 · 𝑠)))
114111, 112, 113syl2anc 409 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → ((2 · 𝑠) # 0 ↔ 0 # (2 · 𝑠)))
115106, 114mpbid 146 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 0 # (2 · 𝑠))
116 qapne 9568 . . . . . . . 8 ((0 ∈ ℚ ∧ (2 · 𝑠) ∈ ℚ) → (0 # (2 · 𝑠) ↔ 0 ≠ (2 · 𝑠)))
117102, 109, 116syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → (0 # (2 · 𝑠) ↔ 0 ≠ (2 · 𝑠)))
118115, 117mpbid 146 . . . . . 6 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → 0 ≠ (2 · 𝑠))
119 simpl 108 . . . . . . . . . 10 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → 𝑞 = 0)
120 simpr 109 . . . . . . . . . 10 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → 𝑟 = (2 · 𝑠))
121119, 120neeq12d 2354 . . . . . . . . 9 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → (𝑞𝑟 ↔ 0 ≠ (2 · 𝑠)))
122119oveq2d 5852 . . . . . . . . . . 11 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → (𝐴𝑞) = (𝐴 − 0))
123122fveq2d 5484 . . . . . . . . . 10 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → (abs‘(𝐴𝑞)) = (abs‘(𝐴 − 0)))
124120oveq2d 5852 . . . . . . . . . . 11 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → (𝐴𝑟) = (𝐴 − (2 · 𝑠)))
125124fveq2d 5484 . . . . . . . . . 10 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − (2 · 𝑠))))
126123, 125breq12d 3989 . . . . . . . . 9 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → ((abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)) ↔ (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑠)))))
127121, 126imbi12d 233 . . . . . . . 8 ((𝑞 = 0 ∧ 𝑟 = (2 · 𝑠)) → ((𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))) ↔ (0 ≠ (2 · 𝑠) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑠))))))
128127rspc2gv 2837 . . . . . . 7 ((0 ∈ ℚ ∧ (2 · 𝑠) ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))) → (0 ≠ (2 · 𝑠) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑠))))))
129102, 109, 128syl2anc 409 . . . . . 6 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟))) → (0 ≠ (2 · 𝑠) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑠))))))
13092, 118, 129mp2d 47 . . . . 5 ((((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑠))))
13162, 63, 91, 130apdifflemr 13760 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) ∧ 𝑠 ∈ ℚ) → 𝐴 # 𝑠)
132131ralrimiva 2537 . . 3 ((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))) → ∀𝑠 ∈ ℚ 𝐴 # 𝑠)
13361, 132impbida 586 . 2 (𝐴 ∈ ℝ → (∀𝑠 ∈ ℚ 𝐴 # 𝑠 ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))))
1342, 133syl5bb 191 1 (𝐴 ∈ ℝ → (∀𝑞 ∈ ℚ 𝐴 # 𝑞 ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) # (abs‘(𝐴𝑟)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1342  wcel 2135  wne 2334  wral 2442   class class class wbr 3976  cfv 5182  (class class class)co 5836  cc 7742  cr 7743  0cc0 7744  1c1 7745   + caddc 7747   · cmul 7749   < clt 7924  cmin 8060  -cneg 8061   # cap 8470   / cdiv 8559  2c2 8899  cz 9182  cq 9548  abscabs 10925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator